【Redis基础】Redis新数据类型(Bitmaps,HyperLoglog,Geospatial)命令简介与案例演示

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 【Redis基础】Redis新数据类型(Bitmaps,HyperLoglog,Geospatial)命令简介与案例演示

Bitmaps


简介


Bitmaps 并不是实际的数据类型,而是定义在String类型上的一个面向字节操作的集合。因为字符串是二进制安全的块,他们的最大长度是512M,最适合设置成2^32个不同字节。

bitmaps的位操作分成两类:1.固定时间的单个位操作,比如把String的某个位设置为1或者0,或者获取某个位上的值 2.对于一组位的操作,对给定的bit范围内,统计设定值为1的数目(比如人口统计)。

bitmaps最大的优势是在存储数据时可以极大的节省空间,比如在一个项目中采用自增长的id来标识用户,就可以仅用512M的内存来记录40亿用户的信息(比如用户是否希望收到新的通知,用1和0标识)


简单来说bitmaps就是一个长度可变的bit数组。每个位只能存储0或1。我们先来看看bitmap的具体表示,当我们使用命令 setbit key (0,2,4,6) 1后,这个bit数组的具体表示为:

bit0bit1bit2bit3bit4bit5bit6bit710101010


命令


1、setbit


格式:

setbit<key><offset><value>设置Bitmaps中某个偏移量的值(0或1)

offset:偏移量从0开始


2、getbit


格式:

getbit<key><offset>获取Bitmaps中某个偏移量的值

获取键的第offset位的值(从0开始算)


3、bitcount


统计字符串被设置为1的bit数。一般情况下,给定的整个字符串都会被进行计数,通过指定额外的 start 或 end 参数,可以让计数只在特定的位上进行。start 和 end 参数的设置,都可以使用负数值:比如 -1 表示最后一个位,而 -2 表示倒数第二个位,start、end 是指bit组的字节的下标数,二者皆包含。

格式

bitcount<key>[start end] 统计字符串从start字节到end字节比特值为1的数量


4、bitop


格式


bitop  and(or/not/xor) <destkey> [key…]
• 1

bitop是一个复合操作, 它可以做多个Bitmaps的and(交集) 、 or(并集) 、 not(非) 、 xor(异或) 操作并将结果保存在destkey中。


看完命令就来个小案例演示这些命令吧


案例演示


场景:某个平台需要统计:用户的活跃情况,1表示活跃

假设现在有20个用户,

2022.08.10:

用户id为1, 3, 5,7, 9,11,13的用户对网站进行了访问

2022.08.11

用户id为0,8, 5,7,13,14,15的用户对网站进行了访问


存储:setbit

将这两天的数据存储


127.0.0.1:6379> setbit users:20220810 1 1
(integer) 0
127.0.0.1:6379> setbit users:20220810 3 1
(integer) 0
127.0.0.1:6379> setbit users:20220810 5 1
(integer) 0
127.0.0.1:6379> setbit users:20220810 7 1
(integer) 0
127.0.0.1:6379> setbit users:20220810 9 1
(integer) 0
127.0.0.1:6379> setbit users:20220810 11 1
(integer) 0
127.0.0.1:6379> setbit users:20220810 13 1
(integer) 0


127.0.0.1:6379> setbit users:20220811 0 1
(integer) 0
127.0.0.1:6379> setbit users:20220811 8 1
(integer) 0
127.0.0.1:6379> setbit users:20220811 5 1
(integer) 0
127.0.0.1:6379> setbit users:20220811 7 1
(integer) 0
127.0.0.1:6379> setbit users:20220811 13 1
(integer) 0
127.0.0.1:6379> setbit users:20220811 14 1
(integer) 0
127.0.0.1:6379> setbit users:20220811 15 1
(integer) 0

获取:getbit

id=16,和id=3的用户是否在2022-08-11这天访问过


127.0.0.1:6379> getbit users:20220810 16
(integer) 0
127.0.0.1:6379> getbit users:20220810 3
(integer) 1


统计:bitcount

计算2022-08-11这天访问用户数量


127.0.0.1:6379> bitcount users:20220810
(integer) 7


计算:bitop

计算出两天都访问过平台的用户数量


127.0.0.1:6379> bitop and users:and 20220811_10 users:20220810 users:20220811
(integer) 2


HyperLoglog

简介


在工作当中,我们经常会遇到与统计相关的功能需求,比如统计网站PV(PageView页面访问量),可以使用Redis的incr、incrby轻松实现。

但像UV(UniqueVisitor,独立访客)、独立IP数、搜索记录数等需要去重和计数的问题如何解决?这种求集合中不重复元素个数的问题称为基数问题。

解决基数问题有很多种方案:

(1)数据存储在MySQL表中,使用distinct count计算不重复个数

(2)使用Redis提供的hash、set、bitmaps等数据结构来处理

以上的方案结果精确,但随着数据不断增加,导致占用空间越来越大,对于非常大的数据集是不切实际的。

能否能够降低一定的精度来平衡存储空间?Redis推出了HyperLogLog

Redis HyperLogLog 是用来做基数统计的算法,HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定的、并且是很小的。

在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数。这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。

但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,所以 HyperLogLog 不能像集合那样,返回输入的各个元素。

什么是基数?

比如数据集 {1, 3, 5, 7, 5, 7, 8}, 那么这个数据集的基数集为 {1, 3, 5 ,7, 8}, 基数(不重复元素)为5。 基数估计就是在误差可接受的范围内,快速计算基数。


命令


1.pfadd


格式

pfadd <key>< element> [element ...] 添加指定元素到 HyperLogLog 中


2.pfcount


格式


pfcount<key> [key ...] 计算HLL的近似基数,可以计算多个HLL,比如用HLL存储每天的UV,计算一周的UV可以使用7天的UV合并计算即可


3.pfmerge


格式

pfmerge<destkey><sourcekey> [sourcekey ...] 将一个或多个HLL合并后的结果存储在另一个HLL中,比如每月活跃用户可以使用每天的活跃用户来合并计算可得


案例演示


1.统计某博客网站每天独立访客的人数,用HLL数据类型存取


127.0.0.1:6379> pfadd count:day01 "tom"
(integer) 1
127.0.0.1:6379> pfadd count:day01 "bob"
(integer) 1
127.0.0.1:6379> pfadd count:day01 "alen"
(integer) 1
127.0.0.1:6379> pfadd count:day01 "alen"
(integer) 0
127.0.0.1:6379> pfadd count:day02 "tom"
(integer) 1
127.0.0.1:6379> pfadd count:day02 "jpl"
(integer) 1
127.0.0.1:6379> pfadd count:day02 "lbb"
(integer) 1


2.统计每天的访客量


127.0.0.1:6379> pfcount count:day01
(integer) 3
127.0.0.1:6379> pfcount count:day02
(integer) 3


3.计算两天的独立访客量


127.0.0.1:6379> pfcount count:twodays count:day01 count:day02
(integer) 5


Geospatial


简介


Redis 3.2 中增加了对GEO类型的支持。GEO,Geographic,地理信息的缩写。该类型,就是元素的2维坐标,在地图上就是经纬度。redis基于该类型,提供了经纬度设置,查询,范围查询,距离查询,经纬度Hash等常见操作


命令


1.geoadd


格式

geoadd<key>< longitude><latitude><member> [longitude latitude member...] 添加地理位置(经度,纬度,名称)


2.geopos


格式

geopos <key><member> [member...] 获得指定地区的坐标值


3.geodist


格式

geodist<key><member1><member2> [m|km|ft|mi ] 获取两个位置之间的直线距离

单位:

m 表示单位为米[默认值]。

km 表示单位为千米。

mi 表示单位为英里。

ft 表示单位为英尺。

如果用户没有显式地指定单位参数, 那么 GEODIST 默认使用米作为单位


4.georadius


格式

georadius< longitude>radius m|km|ft|mi 以给定的经纬度为中心,找出某一半径内的元素

经度 纬度 距离 单位


案例演示


1.存储各个城市的经度纬度


127.0.0.1:6379> pfcount count:twodays count:day01 count:day02
(integer) 5
127.0.0.1:6379> geoadd china:city 121.47 31.23 shanghai
(integer) 1
127.0.0.1:6379> geoadd china:city 106.50 29.53 chongqing 114.05 22.52 shenzhen 116.38 39.90 beijing
(integer) 3
127.0.0.1:6379> 


2.取出某个城市的经纬度


127.0.0.1:6379> geopos china:city shanghai
1) 1) "121.47000163793563843"
   2) "31.22999903975783553"
127.0.0.1:6379> 


3.计算两个城市之间的直线距离


127.0.0.1:6379> geodist china:city shanghai beijing km
"1068.1535"


4.以给定的经纬度为中心,找出某一半径内的城市


127.0.0.1:6379> georadius china:city 110 30 1000 km
1) "chongqing"
2) "shenzhen"
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
15天前
|
存储 消息中间件 NoSQL
使用Java操作Redis数据类型的详解指南
通过使用Jedis库,可以在Java中方便地操作Redis的各种数据类型。本文详细介绍了字符串、哈希、列表、集合和有序集合的基本操作及其对应的Java实现。这些示例展示了如何使用Java与Redis进行交互,为开发高效的Redis客户端应用程序提供了基础。希望本文的指南能帮助您更好地理解和使用Redis,提升应用程序的性能和可靠性。
31 1
|
1月前
|
存储 消息中间件 NoSQL
Redis 数据类型
10月更文挑战第15天
37 1
|
18天前
|
存储 NoSQL Java
Redis命令:列表模糊删除详解
通过本文的介绍,我们详细探讨了如何在Redis中实现列表的模糊删除。虽然Redis没有直接提供模糊删除命令,但可以通过组合使用 `LRANGE`和 `LREM`命令,并在客户端代码中进行模糊匹配,来实现这一功能。希望本文能帮助你在实际应用中更有效地操作Redis列表。
32 0
|
1月前
|
缓存 NoSQL 测试技术
Redis如何解决频繁的命令往返造成的性能瓶颈!
Redis如何解决频繁的命令往返造成的性能瓶颈!
|
1月前
|
NoSQL Redis 数据安全/隐私保护
Redis 命令
10月更文挑战第15天
28 0
|
1月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
|
1月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
77 6
|
14天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
15天前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
8天前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
25 5
下一篇
无影云桌面