Redis高性能IO模型 redis为什么单线程还那么快

本文涉及的产品
云数据库 Redis 版,社区版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis高性能IO模型 redis为什么单线程还那么快

1.2 高性能IO模型

我们通常说,Redis 是单线程,主要是指 Redis 的网络 IO 和键值对读写是由一个线程来完成的,这也是 Redis 对外提供键值存储服务的主要流程。但 Redis 的其他功能,比如持久化、异步删除、集群数据同步等,其实是由额外的线程执行的。所以,严格来说,Redis 并不是单线程,但是我们一般把 Redis 称为单线程高性能,这样显得“酷”些。接下来,我也会把 Redis 称为单线程模式。

1.2.1 Redis 为什么用单线程?

要更好地理解 Redis 为什么用单线程,我们就要先了解多线程的开销。

多线程的开销

日常写程序时,我们经常会听到一种说法:“使用多线程,可以增加系统吞吐率,或是可以增加系统扩展性。”的确,对于一个多线程的系统来说,在有合理的资源分配的情况下,可以增加系统中处理请求操作的资源实体,进而提升系统能够同时处理的请求数,即吞吐率。下面的左图是我们采用多线程时所期待的结果。但是,请你注意,通常情况下,在我们采用多线程后,如果没有良好的系统设计,实际得到的结果,其实是右图所展示的那样。我们刚开始增加线程数时,系统吞吐率会增加,但是,再进一步增加线程时,系统吞吐率就增长迟缓了,有时甚至还会出现下降的情况。

为什么会出现这种情况呢?一个关键的瓶颈在于,系统中通常会存在被多线程同时访问的共享资源,比如一个共享的数据结构。当有多个线程要修改这个共享资源时,为了保证共享资源的正确性,就需要有额外的机制进行保证,而这个额外的机制,就会带来额外的开销。

拿 Redis 来说,Redis 有 List 的数据类型,并提供出队(LPOP)和入队(LPUSH)操作。假设 Redis 采用多线程设计,如下图所示,现在有两个线程 A 和 B,线程 A 对一个 List 做 LPUSH 操作,并对队列长度加 1。同时,线程 B 对该 List 执行 LPOP 操作,并对队列长度减 1。为了保证队列长度的正确性,Redis 需要让线程 A 和 B 的 LPUSH 和 LPOP 串行执行,这样一来,Redis 可以无误地记录它们对 List 长度的修改。否则,我们可能就会得到错误的长度结果。这就是多线程编程模式面临的共享资源的并发访问控制问题。

并发访问控制一直是多线程开发中的一个难点问题,如果没有精细的设计,比如说,只是简单地采用一个粗粒度互斥锁,就会出现不理想的结果:即使增加了线程,大部分线程也在等待获取访问共享资源的互斥锁,并行变串行,系统吞吐率并没有随着线程的增加而增加。而且,采用多线程开发一般会引入同步原语来保护共享资源的并发访问,这也会降低系统代码的易调试性和可维护性。为了避免这些问题,Redis 直接采用了单线程模式。

1.2.2 单线程 Redis 为什么那么快?

通常来说,单线程的处理能力要比多线程差很多,但是 Redis 却能使用单线程模型达到每秒数十万级别的处理能力,这是为什么呢?其实,这是 Redis 多方面设计选择的一个综合结果。

  • 一方面,Redis 的大部分操作在内存上完成,再加上它采用了高效的数据结构,例如哈希表和跳表,这是它实现高性能的一个重要原因。
  • 另一方面,就是 Redis 采用了多路复用机制,使其在网络 IO 操作中能并发处理大量的客户端请求,实现高吞吐率。接下来,我们就重点学习下多路复用机制。

以 Get 请求为例,SimpleKV 为了处理一个 Get 请求,需要监听客户端请求(bind/listen),和客户端建立连接(accept),从 socket 中读取请求(recv),解析客户端发送请求(parse),根据请求类型读取键值数据(get),最后给客户端返回结果,即向 socket 中写回数据(send)。下图显示了这一过程,其中,bind/listen、accept、recv、parse 和 send 属于网络 IO 处理,而 get 属于键值数据操作。既然 Redis 是单线程,那么,最基本的一种实现是在一个线程中依次执行上面说的这些操作。

下图显示了这一过程,其中,bind/listen、accept、recv、parse 和 send 属于网络 IO 处理,而 get 属于键值数据操作。既然 Redis 是单线程,那么,最基本的一种实现是在一个线程中依次执行上面说的这些操作。

但是,在这里的网络 IO 操作中,有潜在的阻塞点,分别是 accept() 和 recv()。当 Redis 监听到一个客户端有连接请求,但一直未能成功建立起连接时,会阻塞在 accept() 函数这里,导致其他客户端无法和 Redis 建立连接。类似的,当 Redis 通过 recv() 从一个客户端读取数据时,如果数据一直没有到达,Redis 也会一直阻塞在 recv()。

这就导致 Redis 整个线程阻塞,无法处理其他客户端请求,效率很低。不过,幸运的是,socket 网络模型本身支持非阻塞模式。

1.2.3 非阻塞模式

Socket 网络模型的非阻塞模式设置,主要体现在三个关键的函数调用上,如果想要使用 socket 非阻塞模式,就必须要了解这三个函数的调用返回类型和设置模式。接下来,我们就重点学习下它们。在 socket 模型中,不同操作调用后会返回不同的套接字类型。socket() 方法会返回主动套接字,然后调用 listen() 方法,将主动套接字转化为监听套接字,此时,可以监听来自客户端的连接请求。最后,调用 accept() 方法接收到达的客户端连接,并返回已连接套接字。

针对监听套接字,我们可以设置非阻塞模式:当 Redis 调用 accept() 但一直未有连接请求到达时,Redis 线程可以返回处理其他操作,而不用一直等待。但是,你要注意的是,调用 accept() 时,已经存在监听套接字了。

虽然 Redis 线程可以不用继续等待,但是总得有机制继续在监听套接字上等待后续连接请求,并在有请求时通知 Redis。类似的,我们也可以针对已连接套接字设置非阻塞模式:Redis 调用 recv() 后,如果已连接套接字上一直没有数据到达,Redis 线程同样可以返回处理其他操作。我们也需要有机制继续监听该已连接套接字,并在有数据达到时通知 Redis。这样才能保证 Redis 线程,既不会像基本 IO 模型中一直在阻塞点等待,也不会导致 Redis 无法处理实际到达的连接请求或数据。到此,Linux 中的 IO 多路复用机制就要登场了。

1.2.4 基于多路复用的高性能 I/O 模型

Linux 中的 IO 多路复用机制是指一个线程处理多个 IO 流,就是我们经常听到的 select/epoll 机制。简单来说,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听套接字和已连接套接字。内核会一直监听这些套接字上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果。

下图就是基于多路复用的 Redis IO 模型。图中的多个 FD(file descriptor) 就是刚才所说的多个套接字。Redis 网络框架调用 epoll 机制,让内核监听这些套接字。此时,Redis 线程不会阻塞在某一个特定的监听或已连接套接字上,也就是说,不会阻塞在某一个特定的客户端请求处理上。正因为此,Redis 可以同时和多个客户端连接并处理请求,从而提升并发性。

为了在请求到达时能通知到 Redis 线程,select/epoll 提供了基于事件的回调机制,即针对不同事件的发生,调用相应的处理函数。那么,回调机制是怎么工作的呢?其实,select/epoll 一旦监测到 FD 上有请求到达时,就会触发相应的事件。这些事件会被放进一个事件队列,Redis 单线程对该事件队列不断进行处理。这样一来,Redis 无需一直轮询是否有请求实际发生,这就可以避免造成 CPU 资源浪费。同时,Redis 在对事件队列中的事件进行处理时,会调用相应的处理函数,这就实现了基于事件的回调。因为 Redis 一直在对事件队列进行处理,所以能及时响应客户端请求,提升 Redis 的响应性能。

为了方便你理解,我再以连接请求和读数据请求为例,具体解释一下。

这两个请求分别对应 Accept 事件和 Read 事件,Redis 分别对这两个事件注册 accept 和 get 回调函数。当 Linux 内核监听到有连接请求或读数据请求时,就会触发 Accept 事件和 Read 事件,此时,内核就会回调 Redis 相应的 accept 和 get 函数进行处理。这就像病人去医院瞧病。在医生实际诊断前,每个病人(等同于请求)都需要先分诊、测体温、登记等。如果这些工作都由医生来完成,医生的工作效率就会很低。所以,医院都设置了分诊台,分诊台会一直处理这些诊断前的工作(类似于 Linux 内核监听请求),然后再转交给医生做实际诊断。这样即使一个医生(相当于 Redis 单线程),效率也能提升。不过,需要注意的是,即使你的应用场景中部署了不同的操作系统,多路复用机制也是适用的。因为这个机制的实现有很多种,既有基于 Linux 系统下的 select 和 epoll 实现,也有基于 FreeBSD 的 kqueue 实现,以及基于 Solaris 的 evport 实现,这样,你可以根据 Redis 实际运行的操作系统,选择相应的多路复用实现。

现在,我们知道了,Redis 单线程是指它对网络 IO 和数据读写的操作采用了一个线程,而采用单线程的一个核心原因是避免多线程开发的并发控制问题。单线程的 Redis 也能获得高性能,跟多路复用的 IO 模型密切相关,因为这避免了 accept() 和 send()/recv() 潜在的网络 IO 操作阻塞点。

1.2.5 总结

Redis单线程处理IO请求性能瓶颈主要包括2个方面:

1、任意一个请求在server中一旦发生耗时,都会影响整个server的性能,也就是说后面的请求都要等前面这个耗时请求处理完成,自己才能被处理到。耗时的操作包括以下几种:

  • a、操作bigkey:写入一个bigkey在分配内存时需要消耗更多的时间,同样,删除bigkey释放内存同样会产生耗时;
  • b、使用复杂度过高的命令:例如SORT/SUNION/ZUNIONSTORE,或者O(N)命令,但是N很大,例如lrange key 0 -1一次查询全量数据;
  • c、大量key集中过期:Redis的过期机制也是在主线程中执行的,大量key集中过期会导致处理一个请求时,耗时都在删除过期key,耗时变长;
  • d、淘汰策略:淘汰策略也是在主线程执行的,当内存超过Redis内存上限后,每次写入都需要淘汰一些key,也会造成耗时变长;
  • e、AOF刷盘开启always机制:每次写入都需要把这个操作刷到磁盘,写磁盘的速度远比写内存慢,会拖慢Redis的性能;
  • f、主从全量同步生成RDB:虽然采用fork子进程生成数据快照,但fork这一瞬间也是会阻塞整个线程的,实例越大,阻塞时间越久;

2、并发量非常大时,单线程读写客户端IO数据存在性能瓶颈,虽然采用IO多路复用机制,但是读写客户端数据依旧是同步IO,只能单线程依次读取客户端的数据,无法利用到CPU多核。

针对问题1,一方面需要业务人员去规避,一方面Redis在4.0推出了lazy-free机制,把bigkey释放内存的耗时操作放在了异步线程中执行,降低对主线程的影响

针对问题2,Redis在6.0推出了多线程,可以在高并发场景下利用CPU多核多线程读写客户端数据,进一步提升server性能,当然,只是针对客户端的读写是并行的每个命令的真正操作依旧是单线程的


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
3天前
|
存储 NoSQL Redis
Redis淘汰策略、持久化、主从同步与对象模型
Redis淘汰策略、持久化、主从同步与对象模型
39 0
|
21天前
|
缓存 NoSQL 安全
Redis 新特性篇:多线程模型解读
Redis 新特性篇:多线程模型解读
21 5
|
21天前
|
NoSQL Linux Redis
Redis原理之网络模型笔记
Redis采用单线程模型,这意味着一个Redis服务器在任何时刻都只会处理一个请求。Redis的网络模型涉及到阻塞I/O(Blocking I/O)、非阻塞I/O(Non-blocking I/O)、I/O多路复用(I/O Multiplexing)、信号驱动I/O(Signal-driven I/O)以及异步I/O(Asynchronous I/O)。
|
30天前
|
存储 缓存 NoSQL
Redis 数据结构+线程模型+持久化+内存淘汰+分布式
Redis 数据结构+线程模型+持久化+内存淘汰+分布式
289 0
|
30天前
|
存储 缓存 NoSQL
《吊打面试官》系列-Redis双写一致性、并发竞争、线程模型
《吊打面试官》系列-Redis双写一致性、并发竞争、线程模型
28 0
|
1月前
|
Linux
Linux 下的五种 IO 模型详细介绍
根据上述定义,我们的前4种模型——阻塞式I/O模型、非阻塞式I/O模型、I/O复用模型和信号驱动式I/O模型都是同步I/O模型,因为其中真正的I/O操作(recvfrom )将阻塞进程。异步请求:A调用B,B的处理是异步的,B在接到请求后先告诉A我已经接到请求了,然后异步去处理,处理完之后通过回调等方式再通知A。和上面的阻塞IO模型相比,非阻塞IO模型在内核数据没准备好,需要进程阻塞的时候,就返回一个错误,以使得进程不被阻塞。阻塞请求:A调用B,A一直等着B的返回,别的事情什么也不干。
18 0
Linux 下的五种 IO 模型详细介绍
|
1月前
|
缓存 Java Unix
五种网络IO模型
前言   本文重点在于介绍五种网络IO模型
413 0
|
1月前
|
Java 数据处理
fastdfs源码阅读:文件传输原理与网络IO模型(accept线程、work线程(网络io处理)、dio线程(文件io处理))
fastdfs源码阅读:文件传输原理与网络IO模型(accept线程、work线程(网络io处理)、dio线程(文件io处理))
32 0
|
1月前
|
负载均衡 NoSQL Java
redis7.0源码阅读(四):Redis中的IO多线程(线程池)
redis7.0源码阅读(四):Redis中的IO多线程(线程池)
42 0
|
1月前
|
存储 NoSQL Redis
redis主从同步与对象模型
redis主从同步与对象模型
12 0

热门文章

最新文章