SFINX: 一个基于Shiny部署的鉴定蛋白互作关系平台

简介: 目前研究蛋白质互作方法有很多,传统的方法是将天然蛋白免疫沉淀与质谱检测结合(CoIP-MS),另外流行的还有亲和纯化/质谱法(AP-MS),与CO-IP类似,它使用感兴趣的诱饵蛋白(bait proteins)上的表位标签和捕获探针来识别协同的猎物蛋白,不需要为每个新的诱饵蛋白购买或者开发特定抗体,得到的融合蛋白可以用链霉亲和素(strep)磁珠来亲和纯化,用生物素洗脱最终得到蛋白复合物。

目前研究蛋白质互作方法有很多,传统的方法是将天然蛋白免疫沉淀与质谱检测结合(CoIP-MS),另外流行的还有亲和纯化/质谱法(AP-MS),与CO-IP类似,它使用感兴趣的诱饵蛋白(bait proteins)上的表位标签和捕获探针来识别协同的猎物蛋白,不需要为每个新的诱饵蛋白购买或者开发特定抗体,得到的融合蛋白可以用链霉亲和素(strep)磁珠来亲和纯化,用生物素洗脱最终得到蛋白复合物。

优势:

  1. AP/MS技术得到的互作蛋白是在细胞内与诱饵蛋白结合的,符合体内真实生理情况,得到的结果可信度高。
  2. 不像COIP采用抗体拉取蛋白复合物,可以有效的避免抗体的污染;得到的洗脱液可以直接做溶液酶解和质谱,大大减少了跑胶引起的蛋白损失。

这里介绍一个基于R语言Shiny部署的在线蛋白互作分析平台SFINX, 网络可视化部分利用之前介 4a66d430f3ab2f5c31ceab96ffdabbf.png

地址:http://sfinx.ugent.be/

使用

Info部分提供了详细的用户使用说明(主要有5部分):

  1. Data Input(输入框页面介绍)

1a10a8562f9bbffef8128feadaf792f.png

  1. Example of "Basic data" file (基本的文件输入格式)

c5f4c8ff5a775375014c6b8a6c6dea5.png

  1. Immediately after input of data(筛选过滤后的互作表格)

0eadc422753a76430d44a1a2dfc755b.png

  1. Data input inadvanced SFINX (高级分析,参数更多)
  2. Imediately after input od data in advanced SFINX

具体信息直接去网站上看即可

实战

这里找到课题组老师17年一篇NC上的主图,用的即使这种方式绘制的图形,附件中也提供了数据分析的输入文件,我们用来实操一下。

56f4641e1367262266b0f681df811e9.png

需要准备两个文件

  1. 蛋白组结果文件 Basic data(各样本肽段数) :

070ffba5a68ba457613d26c9a80d649.png

  1. Bait indentities(诱饵蛋白列表):

ffa3db2af9836f8ab9797b621e2ae17.png

点击Analysis界面,分别上传两个数据,右侧Filtered interactions 界面即可显示出诱饵蛋白与捕获蛋白直接的作用系数以及Pvalue

5c8a312f9ac437796d9026a7e78bbd8.png

Distribution显示SFINX score的分布

0afca2c8e79632fbe0b65d2050e5018.png

点击Network即可看到蛋白互作网络,深蓝色填充的节点即为我们的诱饵蛋白。

6504a55751281771cbaa26360e005b5.png

其实SFINX除了处理AP/MS这类数据之外,该方法理论上也适用于一些普通蛋白质组数据中,若已经有一些关键蛋白想找寻其它互作蛋白时,除了利用常规的String数据库根据先验信息获取外,此方法也是一种不错的选择~

参考文献

  1. SFINX: straightforward filtering index for affinity purification-mass spectrometry data analysis. J Proteome Res (2015) Titeca, K. et al.
  2. A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii Nature Communications (2017) Long.et al.


相关文章
|
弹性计算 运维 监控
ECS资源监控
ECS资源监控涉及CPU、内存、磁盘I/O、网络流量、系统负载和进程的关键指标,通过云服务商控制台、监控服务、API与SDK、运维工具进行实时监控和告警设置。支持历史数据查询、事件监控,以及使用Windows资源监视器和Linux系统工具进行操作系统层面监控。全面监控确保ECS实例稳定运行、资源有效利用和问题及时处理。如需特定云服务商的指导,请询问。
347 3
|
存储
模块加载失败请确保该二进制存储在指定路径中
模块加载失败请确保该二进制存储在指定路径中
1708 0
|
应用服务中间件 nginx
使用Nginx正向代理让内网机器上外网
使用Nginx正向代理让内网机器上外网
2942 0
|
10月前
|
JavaScript 安全 API
iframe嵌入页面实现免登录思路(以vue为例)
通过上述步骤,可以在Vue.js项目中通过 `iframe`实现不同应用间的免登录功能。利用Token传递和消息传递机制,可以确保安全、高效地在主应用和子应用间共享登录状态。这种方法在实际项目中具有广泛的应用前景,能够显著提升用户体验。
1375 9
|
消息中间件 存储 监控
实战Linux I/O多路复用:借助epoll,单线程高效管理10,000+并发连接
本文介绍了如何使用Linux的I/O多路复用技术`epoll`来高效管理超过10,000个并发连接。`epoll`允许单线程监控大量文件描述符,显著提高了资源利用率。文章详细阐述了`epoll`的几个关键接口,包括`epoll_create`、`epoll_ctl`和`epoll_wait`,以及它们在处理并发连接中的作用。此外,还探讨了`epoll`在高并发TCP服务场景的应用,展示了如何通过`epoll`和线程/协程池来构建服务框架。
1292 113
|
存储 数据可视化 数据挖掘
R语言绘制圈图、环形热图可视化基因组实战:展示基因数据比较
R语言绘制圈图、环形热图可视化基因组实战:展示基因数据比较
|
存储 C语言
【数据结构】顺序表(c语言实现)(附源码)
本文介绍了线性表和顺序表的基本概念及其实现。线性表是一种有限序列,常见的线性表有顺序表、链表、栈、队列等。顺序表是一种基于连续内存地址存储数据的数据结构,其底层逻辑是数组。文章详细讲解了静态顺序表和动态顺序表的区别,并重点介绍了动态顺序表的实现,包括初始化、销毁、打印、增删查改等操作。最后,文章总结了顺序表的时间复杂度和局限性,并预告了后续关于链表的内容。
356 3
|
负载均衡 关系型数据库 MySQL
MySQL 主主复制与主从复制对比
MySQL的主主复制和主从复制是两种常见的数据库复制配置方式,各有优缺点和适用场景。以下是对这两种复制方式的详细对比: ### 主从复制 (Master-Slave Replication) **特点:** 1. **单向复制**:数据从主服务器复制到一个或多个从服务器。从服务器只能从主服务器接收数据更新,不能向主服务器发送数据。 2. **读写分离**:主服务器处理写操作(INSERT、UPDATE、DELETE),从服务器处理读操作(SELECT),可以分担读负载,提高系统的整体性能。 3. **数据一致性**:数据在主服务器上是最新的,从服务器上可能会有一定的延迟。 **优点:**
932 1
|
人工智能 数据库 Python
LangChain之各类提示模板的使用
语言模型的提示是用户提供的一组指令或输入,用于指导模型的响应,帮助模型理解上下文并生成相关且连贯的基于语言的输出,例如回答问题、完成句子或参与某项活动、对话。
669 2
|
开发框架 安全 搜索推荐
如何使用Python Flask发布web页面至公网并实现远程访问【内网穿透】
如何使用Python Flask发布web页面至公网并实现远程访问【内网穿透】