[2.0快速体验] Apache Doris 2.0 冷热分离快速体验

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,内容安全 1000次 1年
对象存储 OSS,恶意文件检测 1000次 1年
简介: 未来一个很大的使用场景是类似于es日志存储,日志场景下数据会按照日期来切割数据,很多数据是冷数据,查询很少,需要降低这类数据的存储成本。从节约存储成本角度考虑各云厂商普通云盘的价格都比对象存储贵在doris集群实际线上使用中,普通云盘的利用率无法达到100%云盘不是按需付费,而对象存储可以做到按需付费基于普通云盘做高可用,需要实现多副本,某副本异常要做副本迁移。而将数据放到对象存储上则不存在此类问题,因为对象存储是共享的。

概述

对于任何一种数据库类软件来说,无论其基于传统数据库模型还是基于分布式结构,作为核心的永远是数据本身。而数据的生命周期,则体现在CRUD操作(创建、查询、更新、删除)上。任何一条数据从其生成的时刻开始,数据价值随着时间的推移而逐渐降低,直至成为无用数据,最终删除。

作为使用数据的主体用户,对于各种数据的需求程度是不同的,人们往往对重要的数据有更高效、稳定的访问需求;而对于不重要的数据则没有这么高的要求,而前者存储的代价往往是远高于后者的。用户在满足了自身对于数据使用要求的情况下,自然会开始考虑数据存储成本等方面的问题,对于那些很少访问甚至基本不访问的数据,使用成本更低的存储方式将是一种更好的选择。

针对这样的使用场景,我们将数据根据用户需求分为“热数据”与“冷数据”。顾名思义,“热数据”代表着用户对其有着更频繁的访问需求,“冷数据”则很少访问。一般数据在新创建的时候往往都是“热数据”,而随着时间的推移逐步变成“冷数据”。

对于热数据,其访问的频率很高,且往往是用户非常关心的数据,其实时性要求一般都很高,并且读写的频率也会更高,这正是DORIS本地存储重点解决的问题。

对于冷数据,其数据量往往远大于热数据,并且很少被访问,使用本地存储的代价就很高,这时使用存算分离模型,将其存储到代价更低的存储载体将大大降低成本。

未来一个很大的使用场景是类似于es日志存储,日志场景下数据会按照日期来切割数据,很多数据是冷数据,查询很少,需要降低这类数据的存储成本。从节约存储成本角度考虑

  1. 各云厂商普通云盘的价格都比对象存储贵
  2. 在doris集群实际线上使用中,普通云盘的利用率无法达到100%
  3. 云盘不是按需付费,而对象存储可以做到按需付费
  4. 基于普通云盘做高可用,需要实现多副本,某副本异常要做副本迁移。而将数据放到对象存储上则不存在此类问题,因为对象存储是共享的。

使用体验

下面我们 Minio 为例来演示怎么使用 Doris 基于对象存储的冷热分离功能。

我是在 MacOS 上来进行安装演示的

MacOS Doris 的编译安装

编译具体可以参照官方文档:在macOS平台上编译 - Apache Doris

本地安装单节点:快速开始 - Apache Doris

如果你是 Linux 系统,可以下载官方编译好的2.0.0 alpha 版本进行快速体验:下载 - Apache Doris

curl https://doris.apache.org/download-scripts/2.0.0-alpha1/download_x64_tsinghua.sh | sh

Minio 安装

本文是brew方式,Mac需安装brew支持,本文不再赘述, Linux 系统下的 Minio 网上很多教程,请自行百度

brew install minio/stable/minio

然后可以看到安装成功的信息

Command-line Access: https://docs.min.io/docs/minio-client-quickstart-guide
Object API (Amazon S3 compatible):
   Go:         https://docs.min.io/docs/golang-client-quickstart-guide
   Java:       https://docs.min.io/docs/java-client-quickstart-guide
   Python:     https://docs.min.io/docs/python-client-quickstart-guide
   JavaScript: https://docs.min.io/docs/javascript-client-quickstart-guide
   .NET:       https://docs.min.io/docs/dotnet-client-quickstart-guide
Talk to the community: https://slack.min.io
==> Get started:
NAME:
  minio server - start object storage server
USAGE:
  minio server [FLAGS] DIR1 [DIR2..]
  minio server [FLAGS] DIR{1...64}
  minio server [FLAGS] DIR{1...64} DIR{65...128}
DIR:
  DIR points to a directory on a filesystem. When you want to combine
  multiple drives into a single large system, pass one directory per
  filesystem separated by space. You may also use a '...' convention
  to abbreviate the directory arguments. Remote directories in a
  distributed setup are encoded as HTTP(s) URIs.
FLAGS:
  --address value              bind to a specific ADDRESS:PORT, ADDRESS can be an IP or hostname (default: ":9000") [$MINIO_ADDRESS]
  --console-address value      bind to a specific ADDRESS:PORT for embedded Console UI, ADDRESS can be an IP or hostname [$MINIO_CONSOLE_ADDRESS]
  --ftp value                  enable and configure an FTP(Secure) server
  --sftp value                 enable and configure an SFTP server
  --certs-dir value, -S value  path to certs directory (default: "/Users/zhangfeng/.minio/certs")
  --quiet                      disable startup and info messages
  --anonymous                  hide sensitive information from logging
  --json                       output logs in JSON format
  --help, -h                   show help
EXAMPLES:
  1. Start MinIO server on "/home/shared" directory.
     $ minio server /home/shared
  2. Start single node server with 64 local drives "/mnt/data1" to "/mnt/data64".
     $ minio server /mnt/data{1...64}
  3. Start distributed MinIO server on an 32 node setup with 32 drives each, run following command on all the nodes
     $ minio server http://node{1...32}.example.com/mnt/export{1...32}
  4. Start distributed MinIO server in an expanded setup, run the following command on all the nodes
     $ minio server http://node{1...16}.example.com/mnt/export{1...32} \
            http://node{17...64}.example.com/mnt/export{1...64}
  5. Start distributed MinIO server, with FTP and SFTP servers on all interfaces via port 8021, 8022 respectively
     $ minio server http://node{1...4}.example.com/mnt/export{1...4} \
           --ftp="address=:8021" --ftp="passive-port-range=30000-40000" \
           --sftp="address=:8022" --sftp="ssh-private-key=${HOME}/.ssh/id_rsa"
   /opt/homebrew/Cellar/minio/RELEASE.2023-05-04T21-44-30Z_1: 3 files, 100.9MB, built in 3 seconds
==> Running `brew cleanup minio`...
Disable this behaviour by setting HOMEBREW_NO_INSTALL_CLEANUP.
Hide these hints with HOMEBREW_NO_ENV_HINTS (see `man brew`).


启动服务

设置 MINIO_REGION 、MINIO_ACCESS_KEY 、MINIO_SECRET_KEY

export MINIO_REGION=xian
export MINIO_ACCESS_KEY=minioadmin
export MINIO_SECRET_KEY=minioadmin

将 minio 服务放到后台运行

nohup minio server  /Users/zhangfeng/minio_data > /Users/zhangfeng/minio_data/log/minio.log 2>&1 &

然后可以看见登录界面:

登录进去创建 bucket 下面我们就可以进行Doris的冷热分离操作了

image.png


Doris 冷热分离体验

首先我们在 fe/fe.conf 里打开冷热分离这个功能,因为新的功能在第一个版本默认是关闭的,所以我们要手动打开,添加下面的内容

enable_storage_policy=true

然后重启 FE。

首先我们创建一个 Resource

创建S3 RESOURCE的时候,会进行S3远端的链接校验,以保证RESOURCE创建的正确

CREATE RESOURCE "remote_s3"
PROPERTIES
(
    "type" = "s3",
    "AWS_ENDPOINT" = "localhost:9000",
    "AWS_REGION" = "xian",
    "AWS_BUCKET" = "test",
    "AWS_ROOT_PATH" = "/test/test001",
    "AWS_ACCESS_KEY" = "minioadmin",
    "AWS_SECRET_KEY" = "minioadmin",
    "AWS_MAX_CONNECTIONS" = "50",
    "AWS_REQUEST_TIMEOUT_MS" = "3000",
    "AWS_CONNECTION_TIMEOUT_MS" = "1000"
);

然后我们创建数据迁移策略(STORAGE POLICY),用于冷热数据转换

CREATE STORAGE POLICY test_policy
PROPERTIES(
    "storage_resource" = "remote_s3",
    "cooldown_ttl" = "1h"
);
  1. cooldown_datetime:热数据转为冷数据时间,不能与cooldown_ttl同时存在。
  2. cooldown_ttl:热数据持续时间。从数据分片生成时开始计算,经过指定时间后转为冷数据。支持的格式: 1d:1天 1h:1小时 50000: 50000秒

我们后面也可以根据自己的策略来修改这个 ttl 时间,修改命令示例:

ALTER STORAGE POLICY test_policy PROPERTIES("cooldown_ttl" = "5h");


我们创建一张表,并将这个数据迁移策略应用到这个表上

CREATE TABLE IF NOT EXISTS create_table_use_created_policy 
(
    k1 BIGINT,
    k2 LARGEINT,
    v1 VARCHAR(2048)
)
UNIQUE KEY(k1)
DISTRIBUTED BY HASH (k1) BUCKETS 1
PROPERTIES(
    "storage_policy" = "test_policy",
    "replication_num" = "1"
);

我们插入几条数据:

insert into create_table_use_created_policy values (10001,100001,'11');
 insert into create_table_use_created_policy values (10002,100001,'11');
 insert into create_table_use_created_policy values (10003,100001,'11');

这里我设置了1个小时后进行冷热迁移,一个小时后我们可以在对象存储上看到数据已经迁移过来

image.png


同时我们也可以通过 Doris 提供的命令来查看

show tablets from tbl


image.png

从这个图上我们也可以看到,已经将部分数据迁移到对象存储上了

还可以通过show proc '/backends'可以查看到每个be上传到对象的大小,RemoteUsedCapacity项

image.png

我们后面也会在 show data这个命令加上RemoteDataSize这个属性,这样更方便用户查看表的对象存储使用情况


是不是非常简单方便呢,快点动手体验提来吧



相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
目录
相关文章
|
2月前
|
存储 自然语言处理 BI
|
2月前
|
Apache Java 数据库连接
Apache Doris 2.0.15 版本发布
Apache Doris 2.0.15 版本已于 2024 年 9 月 30 日正式与大家见面,该版本提交了 157 个改进项以及问题修复,进一步提升了系统的性能及稳定性,欢迎大家下载体验。
|
3月前
|
存储 SQL 缓存
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
|
26天前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
14天前
|
SQL 存储 数据处理
兼顾高性能与低成本,浅析 Apache Doris 异步物化视图原理及典型场景
Apache Doris 物化视图进行了支持。**早期版本中,Doris 支持同步物化视图;从 2.1 版本开始,正式引入异步物化视图,[并在 3.0 版本中完善了这一功能](https://www.selectdb.com/blog/1058)。**
|
21天前
|
SQL 存储 Java
Apache Doris 2.1.7 版本正式发布
亲爱的社区小伙伴们,**Apache Doris 2.1.7 版本已于 2024 年 11 月 10 日正式发布。**2.1.7 版本持续升级改进,同时在湖仓一体、异步物化视图、半结构化数据管理、查询优化器、执行引擎、存储管理、以及权限管理等方面完成了若干修复。欢迎大家下载使用。
|
27天前
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
|
27天前
|
SQL DataWorks 关系型数据库
阿里云 DataWorks 正式支持 SelectDB & Apache Doris 数据源,实现 MySQL 整库实时同步
阿里云数据库 SelectDB 版是阿里云与飞轮科技联合基于 Apache Doris 内核打造的现代化数据仓库,支持大规模实时数据上的极速查询分析。通过实时、统一、弹性、开放的核心能力,能够为企业提供高性价比、简单易用、安全稳定、低成本的实时大数据分析支持。SelectDB 具备世界领先的实时分析能力,能够实现秒级的数据实时导入与同步,在宽表、复杂多表关联、高并发点查等不同场景下,提供超越一众国际知名的同类产品的优秀性能,多次登顶 ClickBench 全球数据库分析性能排行榜。
|
2月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
2月前
|
存储 小程序 Apache
10月26日@杭州,飞轮科技 x 阿里云举办 Apache Doris Meetup,探索保险、游戏、制造及电信领域数据仓库建设实践
10月26日,由飞轮科技与阿里云联手发起的 Apache Doris 杭州站 Meetup 即将开启!
56 0

推荐镜像

更多