DiVenn一款用于比较基因列表的交互式Venn图绘制工具

简介: Divenn一种基于网络的基于Web的工具Divenn 可以将来自多个RNA-seq实验中的基因列表进行比较,并显示每个基因(集)的调控水平和整合到Kegg pathway和GO term的数据信息。我们通过该工具更加方便的了解重叠基因与其相关的pathway或Go terms之间的表达模式,十分有趣。

Divenn一种基于网络的基于Web的工具

Divenn 可以将来自多个RNA-seq实验中的基因列表进行比较,并显示每个基因(集)的调控水平和整合到Kegg pathway和GO term的数据信息。我们通过该工具更加方便的了解重叠基因与其相关的pathway或Go terms之间的表达模式,十分有趣。

Divenn有以下三种优势:

  • 添加基因表达水平信息于Venn图中(可比较多个数据集)
  • 交互性可视化整合于GO和代谢通路数据库的生物注释,可高亮感兴趣的基因node
  • 高分辨率的图形和基因相关信息输出

Github地址:https://github.com/BCH-RC/DiVenn

网页地址:https://divenn.tch.harvard.edu/

Tutor视频地址:https://www.youtube.com/watch?v=A7Ldx24e9UU&feature=youtu.be

输入数据

当前支持两种类型的输入数据:

  1. 两列tab分割的自定义数据。比如Gene ID 和相应的通路信息,转录因子和它们所调节的下游基因,microRNAs和相应的靶基因。注意:第二列数据必须设置为 "1" 或者 "2"。
  2. 基因表达数据 第一列为GeneID,第二列为基因调节信息,也就是我们鉴定到的差异基因上下调信息,设置"1"为上调,"2"为下调基因。如果我们想去链接这些基因至KEGG通路或者GO数据库,开发者提供支持14个模式物种。目前,通路分析只接受3种类型的ID: KEGG, Uniport,和NCBI。所有的agriGO库内支持的ID都支持在Divenn中GO分析。

示例文件可以参考:https://divenn.tch.harvard.edu/data.html

573b5c869f91fc30adb57f59ba4a028.png

框架

可视化

我们选择物种,分组设置为3组加载示例文件进行可视化,点击提交

1a41df51480c6150745678190e3ac85.png

d5e35690ff753d02b61d0348832e547.png

然后就以网络的形式展现Venn图形,可以看到以不同的颜色区分上下调信息,右侧面板可以进行图形控制、形状、字体、通路和GO信息等操作。将Summarize Nodes选为Yes,更加直观调节信息。

f3edc8fd7ba5f28db55662aa751fba0.png

在图形上滚动鼠标滚轮将放大/缩小图形。

左键点击一个节点会显示连接的边缘颜色,这将显示每个实验的基因调控状态。双击同一节点将隐藏连接边的颜色。

b635ca1b1e28918fbad93126f11a25e.png

右键单击一个节点将显示5个功能选项:显示或隐藏一个或所有节点标签,显示该基因或所有基因通路或GOterm。这样我们能方便的查看各个交集或者独立基因集设计的功能信息~

5cc050831c4074575b0ff76f2275be4.png

右侧面板show Gene Details中选中pathway或者Gene Ontology, 即可生成所有基因相关的功能及通路信息的表格,且支持搜索排序。

d992179081fd803fcea9d8b5068c3d6.png

如果需要在基于此表格中筛选部分基因重新作图,可选中后面的复选框。按SHIFT进行加选。最后点击表格下方的“Redraw”按钮将所选基因重新绘制出图。

之后我们点击右侧的保存图形即可,支持svg、png和jpg三种格式,快去试试吧~~

参考文献

Sun, Liang, et al. "DiVenn: An Interactive and Integrated Web-based Visualization Tool for Comparing Gene Lists." Frontiers in Genetics (2019),doi: 10.3389/fgene.2019.00421

相关文章
|
数据可视化 Android开发
XMind 2021 v11.1.2破解版使用方法
XMind 2021 v11.1.2破解版使用方法
669 0
|
缓存 API Android开发
Android Kotlin之Flow数据流
`Flow`是`google`官方提供的一套基于`kotlin`协程的响应式编程模型,它与`RxJava`的使用类似,但相比之下`Flow`使用起来更简单,另外`Flow`作用在协程内,可以与协程的生命周期绑定,当协程取消时,`Flow`也会被取消,避免了内存泄漏风险。
1399 1
|
人工智能 数据可视化 Go
R绘图实战|GSEA富集分析图
GSEA(Gene Set EnrichmentAnalysis),即基因集富集分析,它的基本思想是使用预定义的基因,将基因按照在两类样本中的差异表达程度排序,然后检验预先设定的基因集合是否在这个排序表的顶端或者底端富集。
3119 0
R绘图实战|GSEA富集分析图
|
8月前
|
Kubernetes Cloud Native 开发者
alibaba-load-balancer-controller v1.2.0:开启云原生网关开源新篇章!敬请探索!
alibaba-load-balancer-controller v1.2.0:开启云原生网关开源新篇章!敬请探索!
246 61
|
算法 数据处理 数据库
生物学经典Blast序列比对算法原理,如何在R语言和Python中实现序列的比对分析?
生物学经典Blast序列比对算法原理,如何在R语言和Python中实现序列的比对分析?
|
Prometheus 监控 Kubernetes
prometheus学习笔记之简介与安装
prometheus学习笔记之简介与安装
prometheus学习笔记之简介与安装
|
存储 人工智能 开发框架
认识什么是互联网数据中心(IDC)
互联网数据中心(IDC)拥有高速带宽、高性能网络与安全环境,提供服务器托管、租用等服务。它是数据存储与流通的核心,支持互联网内容提供商、企业和各类网站的大规模、高质量需求。机房维护涵盖多方面,确保设备稳定运行。中国IDC行业快速发展,机房按星级划分,从一星到五星,标准逐步提升,体现国家信息基础设施的进步与成熟。国际上,Uptime Institute的Tier等级进一步规范了数据中心的可用性与可靠性标准。
2657 6
|
搜索推荐 物联网 Linux
鸿蒙OS Next与安卓系统的比较
【6月更文挑战第2天】鸿蒙OS Next与安卓系统的比较
2151 3
|
Ubuntu Docker 容器
Ubuntu 22.04.3 LTS_安装Docker
Ubuntu 22.04.3 LTS_安装Docker
1374 2
|
自然语言处理 文字识别 测试技术
测试CLIP zero-shot learning
CLIP是OpenAI的多模态预训练模型,使用对比学习在大量文本-图像对上训练,便于迁移至各种下游任务,如图像分类、OCR等。它通过分别编码文本和图像并计算相似度来评估匹配度。在图像分类测试中,CLIP能有效识别图像类别。此外,CLIP还可用于图像描述生成、文本搜图和文本生成图片(如AIGC)。近期研究致力于优化CLIP的数据、模型和监督方法。5月更文挑战第11天
320 0