OpenMV图像处理之后给单片机通讯

简介: OpenMV图像处理之后给单片机通讯

个人一开始以为我写了的这几个博客已经够清楚了,让各大网友正常使用OpenMV图像处理,然后与单片机通讯应该会很简单。但还是有人不知道,我就还是提供一下我的代码。

代码就是识别红黄绿三种颜色和二维码信息,识别到颜色分别发送0、1、2。


接线

接线很简单,就是OpenMV的TX(P4)——单片机RX,RX(P5)——单片机TX,GND——GND,3.3V——3.3V

要识别的材料

git链接:git仓库


OpenMV代码

代码

由于我以上博客已经详细介绍了,再次不在啰嗦,直接贴代码。

import sensor, image, time, math
from pyb import UART
#threshold_index = 0 # 0 for red, 1 for green, 2 for blue
# 颜色跟踪阈值 (L Min, L Max, A Min, A Max, B Min, B Max)
# 下面的阈值通常跟踪红色/绿色/蓝色的东西。您可能希望调整它们……
thresholds = [(50, 65, 40, 50, 35, 60), # generic_red_thresholds
              (75, 90, -80, -70, 40, 80), # generic_green_thresholds
              (55, 70, -21, 0, -50, -35)]     # generic_blue_thresholds
sensor.reset()#重置感光元件,重置摄像机
sensor.set_pixformat(sensor.RGB565) #设置颜色格式为RGB565,彩色,每个像素16bit。
sensor.set_framesize(sensor.QVGA)   #图像大小为QVGA
sensor.skip_frames(time = 2000)     #跳过n张照片,在更改设置后,跳过一些帧,等待感光元件变稳定。
sensor.set_auto_gain(False)         #颜色识别必须关闭自动增益,会影响颜色识别效果
sensor.set_auto_whitebal(False)     #颜色识别必须关闭白平衡,会影响颜色识别效果,导致颜色的阈值发生改变
clock = time.clock()
uart = UART(3, 9600)  #初始化串口3,波特率为9600(注意:上位机记得也配置成9600)
# 只有像素大于“pixels_threshold”和面积大于“area_threshold”的区域才是
# 由下面的"find_blobs"返回。更改“pixels_threshold”和“area_threshold”
# 相机的分辨率。"merge=True"合并图像中所有重叠的斑点。
while(True):
    clock.tick()# 追踪两个snapshots()之间经过的毫秒数.
    img = sensor.snapshot()#截取感光元件中的一张图片
    img.lens_corr(1.8) # 1.8的强度参数对于2.8mm镜头来说是不错的。
    #在img.find_blobs这个函数中,我们进行颜色识别
    #roi是“感兴趣区”,是在画面的中央还是右上方或者哪里进行颜色识别。此处我们没有进行配置,默认整个图像进行识别
    for blob in img.find_blobs([thresholds[0]], pixels_threshold=200, area_threshold=200, merge=True):
        # 这些值始终是稳定的。
        uart.write("0")
        print('0')
        img.draw_rectangle(blob.rect())      #用矩形标记出目标颜色区域
        img.draw_cross(blob.cx(), blob.cy()) #在目标颜色区域的中心画十字形标记
    for blob in img.find_blobs([thresholds[1]], pixels_threshold=200, area_threshold=200, merge=True):
        # 这些值始终是稳定的。
        uart.write("1")
        print('1')
        img.draw_rectangle(blob.rect())      #用矩形标记出目标颜色区域
        img.draw_cross(blob.cx(), blob.cy()) #在目标颜色区域的中心画十字形标记
    for blob in img.find_blobs([thresholds[2]], pixels_threshold=200, area_threshold=200, merge=True):
        # 这些值始终是稳定的。
        uart.write("2")
        print('2')
        img.draw_rectangle(blob.rect())      #用矩形标记出目标颜色区域
        img.draw_cross(blob.cx(), blob.cy()) #在目标颜色区域的中心画十字形标记
    for code in img.find_qrcodes():  # 进行二维码检测
        img.draw_rectangle(code.rect(), color = (255, 0, 0))
        message = code.payload() #返回二维码有效载荷的字符串
        if message == 'red':
            uart.write("0")
            print('0')
        if message == 'green':
            uart.write("1")
            print('1')
        if message == 'blue':
            uart.write("2")
            print('2')


for...in...部分简单介绍

可能有人看到,我这里是使用了 for...in...,那么程序应该无论如何都会依次发送0、1、2。其实不是这样的,你可以写一个这个。你会发现,如果OpenMV没有识别到红色,那么串行中断显示的都是【】,这个表示一个空数组。而因为他是空数组,所以没有数据返回给blob,for...in...语句也就不会进行,因此不会依次发送0、1、2。

print(img.find_blobs([thresholds[0]], pixels_threshold=200, area_threshold=200, merge=True))

stm32代码

我只贴串口2中断部分,如果你连stm32串口配置都不会,那我也无话可说。


注意,我这里Task_OLED_ShowString是我自己写的OLED函数,你是没有的。虽然这是很基础的东西,还是提醒一下。

//OpenMV串口中断
void USART2_IRQHandler()      
{
  uint16_t temp;
  //while(USART_GetITStatus(USART1,USART_IT_RXNE) == RESET); //使用这个,程序会一直停留在这里 
  if(USART_GetITStatus(OpenMV_USART,USART_IT_RXNE) != RESET)
  {
    temp = USART_ReceiveData(OpenMV_USART);
    switch(temp)
    {
      case '0':Task_OLED_Clear();Task_OLED_ShowString(0,0,"Red",40);break;
      case '1':Task_OLED_Clear();Task_OLED_ShowString(0,0,"Green",40);break;
      case '2':Task_OLED_Clear();Task_OLED_ShowString(0,0,"Blue",40);break;
    }
  }
  //USART_SendByte(OpenMV_USART,temp);//将接收到的数据返回
  //USART_ClearITPendingBit(USART1,USART_IT_RXNE);
}


msp430f5529代码

这里是用的串口0

MSP430F5529库函数学习——串口

#pragma vector=USCI_A0_VECTOR
__interrupt void USCI_A0_ISR (void)
{
    uint8_t receivedData = 0;
    switch (__even_in_range(UCA0IV,4))
    {
        //Vector 2 - RXIFG
        case 2:
            receivedData = USCI_A_UART_receiveData(USCI_A0_BASE);
        switch(receivedData)
        {
          case '0':Task_OLED_Clear();Task_OLED_ShowString(0,0,"Red",40);break;
          case '1':Task_OLED_Clear();Task_OLED_ShowString(0,0,"Green",40);break;
          case '2':Task_OLED_Clear();Task_OLED_ShowString(0,0,"Blue",40);break;
        }
            break;
        default:
            break;
    }
}
目录
相关文章
|
存储 算法 C语言
基于51单片机的通讯聊天系统(下)
基于51单片机的通讯聊天系统(下)
基于51单片机的通讯聊天系统(下)
|
算法 C语言
基于51单片机的通讯聊天系统(上)
基于51单片机的通讯聊天系统
基于51单片机的通讯聊天系统(上)
|
程序员
1.程序员如何学单片机。2.DELPHI如何和AVR通讯。
主题: 1.程序员如何学单片机。 2.DELPHI如何和AVR通讯。 主讲:A1 时间:2005-03-11 15:00 名称解释 结构性思维--从大局考虑 离散性思维--只就事论事 2005-03-11 14:51:12 A1.胜利大逃亡(2282902) 今天的主题看公告 2005-03-11 14:51:57 A1.胜利大逃亡(2282902) 1.程序员如何学单片机。
872 0
|
7月前
|
编译器 C语言 开发者
单片机原理与应用:探索微型计算机世界
单片机原理与应用:探索微型计算机世界
59 1
|
7月前
|
数据采集 数据处理 C语言
单片机:探索其原理、应用与编程实践
单片机:探索其原理、应用与编程实践
110 1
|
7月前
|
物联网
STC51单片机-实验开发装置仿真-物联网应用系统设计
STC51单片机-实验开发装置仿真-物联网应用系统设计
151 0
|
7月前
|
物联网
STC51单片机-控制LED闪亮的仿真-物联网应用系统设计
STC51单片机-控制LED闪亮的仿真-物联网应用系统设计
88 0
|
2月前
|
传感器 存储 物联网
单片机的原理与应用
单片机是一种将计算机的CPU、存储器、输入输出接口等功能集成在一块芯片上的微型计算机,被广泛应用于各类控制系统和智能设备中。
93 5
|
5月前
|
传感器 存储 程序员
《单片机原理与应用及C51编程技术》期末复习笔记
《单片机原理与应用及C51编程技术》期末复习笔记
|
7月前
|
传感器 人工智能 物联网
单片机:编程实践与应用探索
单片机:编程实践与应用探索
82 4
下一篇
DataWorks