【麻雀算法】基于自适应螺旋飞行麻雀搜索算法求解单目标优化问题附matlab代码(Adaptive Spiral Flying Sparrow Search Algorithm,ASFSSA)

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 【麻雀算法】基于自适应螺旋飞行麻雀搜索算法求解单目标优化问题附matlab代码(Adaptive Spiral Flying Sparrow Search Algorithm,ASFSSA)

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

针对麻雀搜索算法(SSA)收敛速度慢,易陷入局部最优的问题,提出一种螺旋探索与自适应混合变异的麻雀搜索算法(SHSSA),融入一种螺旋探索策略,增强发现者探索未知区域的能力,提高算法的全局搜索性能基于12个基准测试函数的仿真结果表明,SHSSA与麻雀搜索算法相比,收敛速度更快,寻优精度更高,稳定性更强.

⛄ 部分代码

%_______________________________________________________________________________________%________________________________________________________________________________%


% This function containts full information and implementations of the benchmark

% functions in Table 1, Table 2, and other test functins from the literature


% lb is the lower bound: lb=[lb_1,lb_2,...,lb_d]

% up is the uppper bound: ub=[ub_1,ub_2,...,ub_d]

% dim is the number of variables (dimension of the problem)


function [lb,ub,dim,fobj] = Get_Functions_details(F)



switch F

   case 'F1'

       fobj = @F1;

       lb=-100;

       ub=100;

       dim=10;

       

   case 'F2'

       fobj = @F2;

       lb=-10;

       ub=10;

       dim=10;

       

   case 'F3'

       fobj = @F3;

       lb=-100;

       ub=100;

       dim=10;

       

   case 'F4'

       fobj = @F4;

       lb=-100;

       ub=100;

       dim=10;

       

   case 'F5'

       fobj = @F5;

       lb=-30;

       ub=30;

       dim=10;

       

   case 'F6'

       fobj = @F6;

       lb=-100;

       ub=100;

       dim=10;

       

   case 'F7'

       fobj = @F7;

       lb=-1.28;

       ub=1.28;

       dim=10;

       

   case 'F8'

       fobj = @F8;

       lb=-500;

       ub=500;

       dim=10;

       

   case 'F9'

       fobj = @F9;

       lb=-5.12;

       ub=5.12;

       dim=10;

       

   case 'F10'

       fobj = @F10;

       lb=-32;

       ub=32;

       dim=10;

       

   case 'F11'

       fobj = @F11;

       lb=-600;

       ub=600;

       dim=10;

       

   case 'F12'

       fobj = @F12;

       lb=-50;

       ub=50;

       dim=10;

       

   case 'F13'

       fobj = @F13;

       lb=-50;

       ub=50;

       dim=10;

       

   case 'F14'

       fobj = @F14;

       lb=-65.536;

       ub=65.536;

       dim=2;

       

   case 'F15'

       fobj = @F15;

       lb=-5;

       ub=5;

       dim=4;

       

   case 'F16'

       fobj = @F16;

       lb=-5;

       ub=5;

       dim=2;

       

   case 'F17'

       fobj = @F17;

       lb=[-5,0];

       ub=[10,15];

       dim=2;

       

   case 'F18'

       fobj = @F18;

       lb=-2;

       ub=2;

       dim=2;

       

   case 'F19'

       fobj = @F19;

       lb=0;

       ub=1;

       dim=3;

       

   case 'F20'

       fobj = @F20;

       lb=0;

       ub=1;

       dim=6;    

       

   case 'F21'

       fobj = @F21;

       lb=0;

       ub=10;

       dim=4;    

       

   case 'F22'

       fobj = @F22;

       lb=0;

       ub=10;

       dim=4;    

       

   case 'F23'

       fobj = @F23;

       lb=0;

       ub=10;

       dim=4;            

end


end


% F1


function o = F1(x)

o=sum(x.^2);

end


% F2


function o = F2(x)

o=sum(abs(x))+prod(abs(x));

end


% F3


function o = F3(x)

dim=size(x,2);

o=0;

for i=1:dim

   o=o+sum(x(1:i))^2;

end

end


% F4


function o = F4(x)

o=max(abs(x));

end


% F5


function o = F5(x)

dim=size(x,2);

o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);

end


% F6


function o = F6(x)

o=sum(abs((x+.5)).^2);

end


% F7


function o = F7(x)

dim=size(x,2);

o=sum([1:dim].*(x.^4))+rand;

end


% F8


function o = F8(x)

o=sum(-x.*sin(sqrt(abs(x))));

end


% F9


function o = F9(x)

dim=size(x,2);

o=sum(x.^2-10*cos(2*pi.*x))+10*dim;

end


% F10


function o = F10(x)

dim=size(x,2);

o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);

end


% F11


function o = F11(x)

dim=size(x,2);

o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;

end


% F12


function o = F12(x)

dim=size(x,2);

o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...

(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));

end


% F13


function o = F13(x)

dim=size(x,2);

o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...

((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));

end


% F14


function o = F14(x)

aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...

-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];


for j=1:25

   bS(j)=sum((x'-aS(:,j)).^6);

end

o=(1/500+sum(1./([1:25]+bS))).^(-1);

end


% F15


function o = F15(x)

aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];

bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;

o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);

end


% F16


function o = F16(x)

o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);

end


% F17


function o = F17(x)

o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;

end


% F18


function o = F18(x)

o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...

   (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));

end


% F19


function o = F19(x)

aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];

pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];

o=0;

for i=1:4

   o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

end

end


% F20


function o = F20(x)

aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];

cH=[1 1.2 3 3.2];

pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...

.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];

o=0;

for i=1:4

   o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

end

end


% F21


function o = F21(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];


o=0;

for i=1:5

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end


% F22


function o = F22(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];


o=0;

for i=1:7

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end


% F23


function o = F23(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];


o=0;

for i=1:10

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end


function o=Ufun(x,a,k,m)

o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));

end

% This function draws the benchmark functions

⛄ 运行结果

⛄ 参考文献

[1] 杨华勋.基于麻雀搜索算法优化支持向量机的电能质量扰动分类研究[J].红水河, 2023, 42(2):5.

[2] 陈功,曾国辉,黄勃,等.螺旋探索与自适应混合变异的麻雀搜索算法[J].小型微型计算机系统, 2023, 44(4):8.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
相关文章
|
1月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
105 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
1月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
76 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
1月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
60 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
4月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
4月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
4月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
4月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
4月前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
|
4月前
|
算法 调度 SoC
电动汽车充放电V2G模型(Matlab代码)
电动汽车充放电V2G模型(Matlab代码)

热门文章

最新文章