Redis面试

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis 是什么,五种数据类型,Redis 缓存,Redis 雪崩

Redis 是什么

面试官:你先来说下 Redis 是什么吧!
我:(这不就是总结下 Redis 的定义和特点嘛)Redis 是 C 语言开发的一个开源的(遵从 BSD 协议)高性能键值对(key-value)的内存数据库,可以用作数据库、缓存、消息中间件等。
它是一种 NoSQL(not-only sql,泛指非关系型数据库)的数据库。
我顿了一下,接着说,Redis 作为一个内存数据库:
性能优秀,数据在内存中,读写速度非常快,支持并发 10W QPS。单进程单线程,是线程安全的,采用 IO 多路复用机制。丰富的数据类型,支持字符串(strings)、散列(hashes)、列表(lists)、集合(sets)、有序集合(sorted sets)等。支持数据持久化。可以将内存中数据保存在磁盘中,重启时加载。主从复制,哨兵,高可用。可以用作分布式锁。可以作为消息中间件使用,支持发布订阅。

五种数据类型

面试官:总结的不错,看来是早有准备啊。刚来听你提到 Redis 支持五种数据类型,那你能简单说下这五种数据类型吗?
我:当然可以,但是在说之前,我觉得有必要先来了解下 Redis 内部内存管理是如何描述这 5 种数据类型的。
说着,我拿着笔给面试官画了一张图:

我:首先 Redis 内部使用一个 redisObject 对象来表示所有的 key 和 value。
redisObject 最主要的信息如上图所示:type 表示一个 value 对象具体是何种数据类型,encoding 是不同数据类型在 Redis 内部的存储方式。
比如:type=string 表示 value 存储的是一个普通字符串,那么 encoding 可以是 raw 或者 int。
我顿了一下,接着说,下面我简单说下 5 种数据类型:
①String 是 Redis 最基本的类型,可以理解成与 Memcached一模一样的类型,一个 Key 对应一个 Value。Value 不仅是 String,也可以是数字。
String 类型是二进制安全的,意思是 Redis 的 String 类型可以包含任何数据,比如 jpg 图片或者序列化的对象。String 类型的值最大能存储 512M。
②Hash是一个键值(key-value)的集合。Redis 的 Hash 是一个 String 的 Key 和 Value 的映射表,Hash 特别适合存储对象。常用命令:hget,hset,hgetall 等。
③List 列表是简单的字符串列表,按照插入顺序排序。可以添加一个元素到列表的头部(左边)或者尾部(右边) 常用命令:lpush、rpush、lpop、rpop、lrange(获取列表片段)等。
应用场景:List 应用场景非常多,也是 Redis 最重要的数据结构之一,比如 Twitter 的关注列表,粉丝列表都可以用 List 结构来实现。
数据结构:List 就是链表,可以用来当消息队列用。Redis 提供了 List 的 Push 和 Pop 操作,还提供了操作某一段的 API,可以直接查询或者删除某一段的元素。
实现方式:Redis List 的是实现是一个双向链表,既可以支持反向查找和遍历,更方便操作,不过带来了额外的内存开销。
④Set 是 String 类型的无序集合。集合是通过 hashtable 实现的。Set 中的元素是没有顺序的,而且是没有重复的。常用命令:sdd、spop、smembers、sunion 等。
应用场景:Redis Set 对外提供的功能和 List 一样是一个列表,特殊之处在于 Set 是自动去重的,而且 Set 提供了判断某个成员是否在一个 Set 集合中。
⑤Zset 和 Set 一样是 String 类型元素的集合,且不允许重复的元素。常用命令:zadd、zrange、zrem、zcard 等。
使用场景:Sorted Set 可以通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。
当你需要一个有序的并且不重复的集合列表,那么可以选择 Sorted Set 结构。
和 Set 相比,Sorted Set关联了一个 Double 类型权重的参数 Score,使得集合中的元素能够按照 Score 进行有序排列,Redis 正是通过分数来为集合中的成员进行从小到大的排序。
实现方式:Redis Sorted Set 的内部使用 HashMap 和跳跃表(skipList)来保证数据的存储和有序,HashMap 里放的是成员到 Score 的映射。
而跳跃表里存放的是所有的成员,排序依据是 HashMap 里存的 Score,使用跳跃表的结构可以获得比较高的查找效率,并且在实现上比较简单。
数据类型应用场景总结:

Redis 缓存

面试官:想不到你平时也下了不少工夫,那 Redis 缓存你一定用过的吧?
我:用过的。
面试官:那你跟我说下你是怎么用的?
我是结合 Spring Boot 使用的。一般有两种方式,一种是直接通过 RedisTemplate 来使用,另一种是使用 Spring Cache 集成 Redis(也就是注解的方式)。

Redis 雪崩

面试官:Redis 雪崩了解吗?
我:我了解的,目前电商首页以及热点数据都会去做缓存,一般缓存都是定时任务去刷新,或者查不到之后去更新缓存的,定时任务刷新就有一个问题。
举个栗子:如果首页所有 Key 的失效时间都是 12 小时,中午 12 点刷新的,我零点有个大促活动大量用户涌入,假设每秒 6000 个请求,本来缓存可以抗住每秒 5000 个请求,但是缓存中所有 Key 都失效了。
此时 6000 个/秒的请求全部落在了数据库上,数据库必然扛不住,真实情况可能 DBA 都没反应过来直接挂了。
此时,如果没什么特别的方案来处理,DBA 很着急,重启数据库,但是数据库立马又被新流量给打死了。这就是我理解的缓存雪崩。
我心想:同一时间大面积失效,瞬间 Redis 跟没有一样,那这个数量级别的请求直接打到数据库几乎是灾难性的。
你想想如果挂的是一个用户服务的库,那其他依赖他的库所有接口几乎都会报错。
如果没做熔断等策略基本上就是瞬间挂一片的节奏,你怎么重启用户都会把你打挂,等你重启好的时候,用户早睡觉去了,临睡之前,骂骂咧咧“什么垃圾产品”。
面试官摸摸了自己的头发:嗯,还不错,那这种情况你都是怎么应对的?
我:处理缓存雪崩简单,在批量往 Redis 存数据的时候,把每个 Key 的失效时间都加个随机值就好了,这样可以保证数据不会再同一时间大面积失效。
setRedis(key, value, time+Math.random()*10000);
如果 Redis 是集群部署,将热点数据均匀分布在不同的 Redis 库中也能避免全部失效。
或者设置热点数据永不过期,有更新操作就更新缓存就好了(比如运维更新了首页商品,那你刷下缓存就好了,不要设置过期时间),电商首页的数据也可以用这个操作,保险。
面试官:那你了解缓存穿透和击穿么,可以说说他们跟雪崩的区别吗?
我:嗯,了解,先说下缓存穿透吧,缓存穿透是指缓存和数据库中都没有的数据,而用户(黑客)不断发起请求。
举个栗子:我们数据库的 id 都是从 1 自增的,如果发起 id=-1 的数据或者 id 特别大不存在的数据,这样的不断攻击导致数据库压力很大,严重会击垮数据库。
我又接着说:至于缓存击穿嘛,这个跟缓存雪崩有点像,但是又有一点不一样,缓存雪崩是因为大面积的缓存失效,打崩了 DB。
而缓存击穿不同的是缓存击穿是指一个 Key 非常热点,在不停地扛着大量的请求,大并发集中对这一个点进行访问,当这个 Key 在失效的瞬间,持续的大并发直接落到了数据库上,就在这个 Key 的点上击穿了缓存。
面试官露出欣慰的眼光:那他们分别怎么解决?
我:缓存穿透我会在接口层增加校验,比如用户鉴权,参数做校验,不合法的校验直接 return,比如 id 做基础校验,id<=0 直接拦截。
面试官:那你还有别的方法吗?
我:我记得 Redis 里还有一个高级用法布隆过滤器(Bloom Filter)这个也能很好的预防缓存穿透的发生。
它的原理也很简单,就是利用高效的数据结构和算法快速判断出你这个 Key 是否在数据库中存在,不存在你 return 就好了,存在你就去查 DB 刷新 KV 再 return。

相关文章
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
3月前
|
存储 NoSQL 定位技术
Redis数据类型面试给分情况
Redis常见数据类型包括:string、hash、list、set、zset(有序集合)。此外还包含高级结构如bitmap、hyperloglog、geo。不同场景可选用合适类型,如库存用string,对象存hash,列表用list,去重场景用set,排行用zset,签到用bitmap,统计访问量用hyperloglog,地理位置用geo。
89 5
|
4月前
|
缓存 NoSQL Java
Java Redis 面试题集锦 常见高频面试题目及解析
本文总结了Redis在Java中的核心面试题,包括数据类型操作、单线程高性能原理、键过期策略及分布式锁实现等关键内容。通过Jedis代码示例展示了String、List等数据类型的操作方法,讲解了惰性删除和定期删除相结合的过期策略,并提供了Spring Boot配置Redis过期时间的方案。文章还探讨了缓存穿透、雪崩等问题解决方案,以及基于Redis的分布式锁实现,帮助开发者全面掌握Redis在Java应用中的实践要点。
195 6
|
6月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
9月前
|
存储 缓存 NoSQL
Redis 面试题
Redis 基础面试题
|
11月前
|
存储 NoSQL 算法
阿里面试:亿级 redis 排行榜,如何设计?
本文由40岁老架构师尼恩撰写,针对近期读者在一线互联网企业面试中遇到的高频面试题进行系统化梳理,如使用ZSET排序统计、亿级用户排行榜设计等。文章详细介绍了Redis的四大统计(基数统计、二值统计、排序统计、聚合统计)原理和应用场景,重点讲解了Redis有序集合(Sorted Set)的使用方法和命令,以及如何设计社交点赞系统和游戏玩家排行榜。此外,还探讨了超高并发下Redis热key分治原理、亿级用户排行榜的范围分片设计、Redis Cluster集群持久化方式等内容。文章最后提供了大量面试真题和解决方案,帮助读者提升技术实力,顺利通过面试。
|
11月前
|
存储 NoSQL 算法
面试官:Redis 大 key 多 key,你要怎么拆分?
本文介绍了在Redis中处理大key和多key的几种策略,包括将大value拆分成多个key-value对、对包含大量元素的数据结构进行分桶处理、通过Hash结构减少key数量,以及如何合理拆分大Bitmap或布隆过滤器以提高效率和减少内存占用。这些方法有助于优化Redis性能,特别是在数据量庞大的场景下。
面试官:Redis 大 key 多 key,你要怎么拆分?
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
11月前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
11月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!