m基于FPGA的AGC自适应增益控制系统verilog实现,包含testbench

简介: m基于FPGA的AGC自适应增益控制系统verilog实现,包含testbench

1.算法仿真效果
Vivado2019.2仿真结果如下:

4c96420fa9a1dd82a56305d3b5395b51_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

放大后可以看到:

0ed432bf4fb67a4f1daba49f7b53769f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
40dcaca1cb5d66c447fce9d8b8a21467_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1a80a120ad9657a4def32cd7c139585f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
数字AGC(Automatic Gain Control)是一种广泛应用于通信系统中的自动增益控制技术。它可以自动调节接收信号的增益,以使信号的强度保持在适当的范围内,从而保证接收到的信号质量。

    数字AGC广泛应用于通信系统中,如无线电通信、卫星通信、雷达系统等。在这些应用中,数字AGC可以保证接收到的信号强度始终在适当的范围内,从而保证通信的质量和可靠性。以无线电通信为例,数字AGC可以使接收机在强信号和弱信号之间自动切换,从而避免强信号引起的失真和弱信号引起的噪声。数字AGC还可以减少对电池的能量消耗,延长电池寿命。在卫星通信中,数字AGC可以使接收机在不同的天线方向之间自动切换,并根据信号的强度进行自动调节,从而保证接收到的信号质量和可靠性。在雷达系统中,数字AGC可以保证雷达接收到的回波信号强度始终在适当的范围内,从而保证雷达的探测距离和探测精度。总之,数字AGC是一种非常重要的技术,在通信系统、雷达系统等领域有着广泛的应用和发展前景。

   在文中,我们将详细介绍基于FPGA的数字AGC的原理和工作过程实现步骤。数字AGC的基本原理是在接收信号经过前端放大器之后,将信号进行采样、ADC转换、数字滤波等处理,得到信号的强度值,并将其与设定的阈值进行比较,然后根据比较结果对前端放大器的增益进行自动调节,使信号的强度保持在适当的范围内。具体来说,数字AGC的工作过程如下:

采样:接收信号经过前端放大器之后,将其进行采样,得到一系列的采样值。
ADC转换:将采样值通过ADC转换成数字信号。
数字滤波:对ADC转换后的数字信号进行数字滤波,去除高频噪声和低频漂移。
平方运算:对数字滤波后的信号进行平方运算,得到信号的功率值。
移动平均:对平方运算后的信号进行移动平均,得到信号的平均功率值。
比较:将平均功率值与设定的阈值进行比较,得到比较结果。
自动调节:根据比较结果对前端放大器的增益进行自动调节,使信号的强度保持在适当的范围内。
以上就是数字AGC的基本原理。下面我们将介绍如何在FPGA中实现数字AGC。

3.Verilog核心程序
```//signal 延迟
reg signed[11:0]dly_x[2149:1];
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
for(i=1;i<=2149;i=i+1)
dly_x[i]<=12'd0;
end
else begin
dly_x[1]<=i_x;
for(i=2;i<=2149;i=i+1)
dly_x[i]<=dly_x[i-1];
end
end
//flag 延迟
reg signed[2148:0]dly_flag;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
dly_flag<=2149'd0;
end
else begin
dly_flag<={dly_flag[2147:0],i_flag};
end
end
wire signed[11:0]w_y = dly_x[2149];
assign o_flag= dly_flag[2048];

//自动增益
wire [19 : 0] gains;
blk_agc blk_agc_u (
.clka(i_clk), // input wire clka
.rsta(i_rst), // input wire rsta
.addra(o_egy), // input wire [8 : 0] addra
.douta(gains), // output wire [19 : 0] douta
.rsta_busy() // output wire rsta_busy
);

reg signed[19:0]wgains;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
wgains <= 20'b0;
end
else begin
if(o_flag == 1'b1)
wgains <= gains;
else
wgains <= wgains;
end
end
endmodule
```

相关文章
|
16天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
114 69
|
21天前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
53 26
|
27天前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
53 8
|
1月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
57 11
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
45 1
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
56 4
|
2月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现16QAM调制解调通信系统,使用Verilog语言编写,包括信道模块、误码率统计模块。通过设置不同SNR值(如8dB、12dB、16dB),仿真测试系统的误码性能。项目提供了完整的RTL结构图及操作视频,便于理解和操作。核心程序实现了信号的生成、调制、信道传输、解调及误码统计等功能。
57 3
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的256QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了256QAM调制解调算法的仿真效果及理论基础。使用Vivado 2019.2进行仿真,分别在SNR为40dB、32dB和24dB下生成星座图,并导入Matlab进行分析。256QAM通过将8比特数据映射到复平面上的256个点,实现高效的数据传输。Verilog核心程序包括调制、信道噪声添加和解调模块,最终统计误码率。
40 0
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
### 简介 本项目采用VIVADO 2019.2进行了十六进制相位移键控(16PSK)算法仿真,结果显示,在SNR=30dB时效果为Tttttttttttttt12,在SNR=20dB时效果为Tttttttttttttt34。系统RTL结构如Tttttttttttttt555555所示。16PSK是一种高效的相位调制技术,能在每个符号时间内传输4比特信息,适用于高速数据传输。其工作原理包括将比特流映射到16个相位状态之一(Tttttttttttttt777777),并通过匹配滤波和决策进行解调。具体Verilog核心程序见完整代码。
44 1

热门文章

最新文章