mongo大数据处理优化

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: mongo大数据处理优化

前言

mongo的使用过程中,我们有了越来越多的数据,当数据到达千万级之后,数据处理的效率就是必须提上日程的东西了。
比如:当我们进行分页时,会发现一个问题,刚开始的跳过2000展示2000,返回速率很快,毫秒级别,但是当你跳过4000000(400W)展示2000,那可能就需要5秒以上,如果你再加一些查询条件,反应速率可能更慢。所以,千万级以上的大数据处理优化势在必行,
以下,为一部分数据优化方案。

1.优化方案

1.1 数据模型优化

数据反应缓慢的一个主要问题就是表的数据太大,在此我们说数据占用的空间大,有些数据模型,一条数据中就有几十、上百个字段,对应的,即使数据仅仅有几百万条,也会查的非常缓慢,因此,我们就要优化数据模型;
有些人在表中存储数组套对象这种反mongo的结构!!!
因此,我们需要根据业务场景,对需要查询主要的字段进行单独存储,已便于后续进行索引优化;

1.2 数据库分表

当数据量超过一定量级后,查询性能会明显下降,我们就可以根据业务场景记下你那个分库、分表,较少查询数据是的数据分析总量,就像我们日常对log进行分片存储一样;

最简单的就是,我们可以按照年做分割,将不同年份的数据存入不同的数据表中,在查询之前,判断数据的时间范围,根据不同的时间去不同的表进行查询;
其次一个分表优化,与模型优化一致,提取重要信息字段,将其单拉一个表/视图,通过减少表的字段,来减少表的体积;
缺点:如果查询的时间范围横跨很大,我们要对多张表进行查询,增加了查询次数,并且分页问题比较难以处理,因此要根据实际的业务场景来决定分库分表的粒度;

1.3 缓存数据

1.3.1 接口缓存

最有效的api性能优化手段,但弊端也很明显,缓存时间过长会导致最新的数据无法及时同步,所以需要根据实际场景选择合适的缓存时间;

1.3.2 恒定数据缓存

对于那些一旦产生后就不会再更新的数据,考虑将他们放入缓存,减少mongo查询次数
场景1:跨年后,去年的数据会恒定不变的存入数据库,此时可将这部分数据缓存至内存中
场景2:有时我们的数据库中只存储了id,name信息存储在其他表中,此时我们可以将id和name的映射关系存入内存,减少mongo查询次数

1.4 多节点读写分离

大量索引会影响数据的写入速率,同样,同意节点如果在写入大量的数据时,内存使用率过高,也是会影响数据的读取速率;
如果拥有多个Mongo节点,则可以配置读写分离,所有只涉及查询的数据库连接集中分配到某个读节点;

1.5 索引优化

mongo查询可以使用.explain("executionStats")进行分析,最主要是要看是否避免全表扫描、是否使用索引、是否避免内存排序;
索引的原理是在内存中建立了一个排序的列表,key是被添加索引字段的值,value是字段对应document的物理地址,通过查询这张表来避免全文索引,提升查询速度,同时每次给collection插入数据时也会同时给索引中新加入一条数据;
常用的索引类型:普通索引、text、hashed

  • 普通索引:查询时需要按照该字段排序,加普通索引最合适
  • text:查询时需要按照该字段模糊查询,加text索引最合适
  • hashed:查询条件包含该字段的==条件,加hashed索引最合适

索引的本质就是利用空间换时间,因为建立索引需要占用很大的存储空间,并且影响数据插入性能,因此不能滥用索引;
关于索引的详细使用,可以参考以下文章
https://www.yuque.com/morange/morange/ohryo0

1.6 查询语句优化

查询条件优化是最容易执行的,也是最难执行;但是可以参考下面几个原则:
原则一:查询结果和条件不包含所有字段,则需要有限使用projection,只返回需要的字段,尽量减少无效字段的返回与查询;
原则二:优先使用match,再使用sort和group;

小技巧:可以使用.lean()方法进行读取数据,但是要注意,lean()方法会将mongo的原子性破坏为json数组,所以,在使用lean()方法时,mongoose的Getters方法会失效!!!按需求使用!

博主寄语

保持好的习惯,才会让你持续进步
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
存储 分布式计算 大数据
MaxCompute聚簇优化推荐功能发布,单日节省2PB Shuffle、7000+CU!
MaxCompute全新推出了聚簇优化推荐功能。该功能基于 31 天历史运行数据,每日自动输出全局最优 Hash Cluster Key,对于10 GB以上的大型Shuffle场景,这一功能将直接带来显著的成本优化。
219 3
|
3月前
|
数据采集 搜索推荐 Java
Java 大视界 -- Java 大数据在智能教育虚拟学习环境构建与用户体验优化中的应用(221)
本文探讨 Java 大数据在智能教育虚拟学习环境中的应用,涵盖多源数据采集、个性化推荐、实时互动优化等核心技术,结合实际案例分析其在提升学习体验与教学质量中的成效,并展望未来发展方向与技术挑战。
|
4月前
|
数据采集 搜索推荐 算法
大数据信息SEO优化系统软件
大数据信息SEO优化系统软件(V1.0)是公司基于“驱动企业价值持续增长”战略,针对企业网站、电商平台及内容营销场景深度定制的智能化搜索引擎优化解决方案。该软件以“提升搜索排名、精准引流获客”为核心目标,通过整合全网数据采集、智能关键词挖掘、内容质量分析、外链健康度监测等功能模块,为企业构建从数据洞察到策略落地的全链路SEO优化体系,助力品牌高效提升搜索引擎曝光度,实现从流量获取到商业转化的价值升级。
117 2
|
5月前
|
资源调度 安全 Java
Java 大数据在智能教育在线实验室设备管理与实验资源优化配置中的应用实践
本文探讨Java大数据技术在智能教育在线实验室设备管理与资源优化中的应用。通过统一接入异构设备、构建四层实时处理管道及安全防护双体系,显著提升设备利用率与实验效率。某“双一流”高校实践显示,设备利用率从41%升至89%,等待时间缩短78%。该方案降低管理成本,为教育数字化转型提供技术支持。
157 1
|
2月前
|
存储 SQL 分布式计算
MaxCompute 聚簇优化推荐原理
基于历史查询智能推荐Clustered表,显著降低计算成本,提升数仓性能。
256 4
MaxCompute 聚簇优化推荐原理
|
2月前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
174 4
|
2月前
|
大数据 数据挖掘 定位技术
买房不是拍脑袋:大数据教你优化房地产投资策略
买房不是拍脑袋:大数据教你优化房地产投资策略
133 2
|
3月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
3月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
3月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据在智能物流运输车辆智能调度与路径优化中的技术实现(218)
本文深入探讨了Java大数据技术在智能物流运输中车辆调度与路径优化的应用。通过遗传算法实现车辆资源的智能调度,结合实时路况数据和强化学习算法进行动态路径优化,有效提升了物流效率与客户满意度。以京东物流和顺丰速运的实际案例为支撑,展示了Java大数据在解决行业痛点问题中的强大能力,为物流行业的智能化转型提供了切实可行的技术方案。

热门文章

最新文章