带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(13)

简介: 带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(13)

带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(12) https://developer.aliyun.com/article/1248024?groupCode=taobaotech



总结与展望


MNN 通过独特的架构设计,结合各类性能优化的工作,解决了业务场景下深度学习部署的问题。后续也将持续努力,优化架构,改良算法,不断降低算法工程师AI部署的门槛,持续为各类业务带来增量价值。


image.png


参考资料


https://github.com/alibaba/MNN

https://arxiv.org/pdf/2002.12418.pdf

https://arxiv.org/abs/2205.14833

https://www.yuque.com/mnn/cn

https://mp.weixin.qq.com/s/vv2RZHcinKwPyq5_qzNxTg

https://mp.weixin.qq.com/s/mYphx3JKiOEGtWS-H9P7Dg

https://www.khronos.org/assets/uploads/developers/presentations/Alibaba-Xiaying_geometry_outside_Apr21.pdf

https://www.tensorflow.org/guide/tf_numpy

https://numpy.org/

https://docs.opencv.org/4.x/d0/d1e/gapi.html

https://www.tensorflow.org/xla


团队介绍


大淘宝技术MetaTeam,负责面向消费场景的3D/XR基础技术建设和创新应用探索,通过技术和应用创新找到以手机及XR 新设备为载体的消费购物3D/XR新体验。团队在端智能、商品三维重建、3D引擎、XR引擎等方面有深厚的技术积累。先后发布端侧推理引擎MNN,端侧实时视觉算法库PixelAI,商品三维重建工具ObjectDrawer等技术。团队在OSDI、MLSys、CVPR、ICCV、NeurIPS、TPAMI等顶级学术会议和期刊上发表多篇论文。

相关文章
|
10月前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
2370 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
机器学习/深度学习 人工智能 自然语言处理
深度学习之人类水平的语言推理
基于深度学习的人类水平的语言推理,是当前自然语言处理(NLP)和人工智能领域的重要研究方向之一。语言推理的核心在于理解语言中蕴含的复杂语义和逻辑关系,并根据上下文进行推断。
195 3
|
机器学习/深度学习 人工智能 自然语言处理
深度学习之复杂推理与逻辑学习
基于深度学习的复杂推理与逻辑学习是当前人工智能领域中的一个前沿研究方向,旨在结合深度学习与传统逻辑推理的优势,使机器能够在处理复杂任务时具备更强的推理能力。
334 2
|
机器学习/深度学习 人工智能 自动驾驶
智能时代的引擎:深度学习技术在AI领域的革命性应用
本文将深入探讨深度学习技术如何在人工智能领域引领一场技术革命。我们将从基础概念入手,逐步揭示深度学习模型如何通过模仿人类大脑的神经网络结构来处理和分析数据。文章还将讨论深度学习在多个行业中的实际应用案例,并评估其对就业市场、隐私保护以及伦理问题的潜在影响。最终,我们旨在启发读者思考深度学习技术未来的可能性与挑战。
372 27
|
机器学习/深度学习 监控 并行计算
深度学习之生物网络推理
基于深度学习的生物网络推理利用深度学习技术来解析和理解生物网络(如基因调控网络、代谢网络、蛋白质-蛋白质相互作用网络等)的复杂关系和动态行为。
165 5
|
机器学习/深度学习 自然语言处理 自动驾驶
深度学习之知识推理与深度学习结合
基于深度学习的知识推理是将深度学习模型与传统的知识表示和推理技术相结合,以实现更加智能和高效的决策和预测能力。
219 2
|
10月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
409 22
|
7月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1020 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
11月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
953 6
|
9月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
359 40

热门文章

最新文章