为什么对象设置为Null的时候会利于GC的回收?

简介: 为什么对象设置为Null的时候会利于GC的回收?

最近在看ArrayList的源码,看到remove方法中,有这么一行代码:

 public E remove(int index) {
        rangeCheck(index);
        modCount++;
        E oldValue = elementData(index);
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
        return oldValue;
    }

elementData[–size] = null; // clear to let GC do its work

注释里就是说,可以让GC工作。

这是为什么呢?查了查,整理如下:

示例代码

我们来看看一段非常简单的代码:

public static void main(String[] args) {
    if (true) {
        byte[] placeHolder = new byte[64 * 1024 * 1024];
        System.out.println(placeHolder.length / 1024);
    }
    System.gc();
}

我们在if中实例化了一个数组placeHolder,然后在if的作用域外通过System.gc();手动触发了GC,其用意是回收placeHolder,因为placeHolder已经无法访问到了。来看看输出:

65536
[GC 68239K->65952K(125952K), 0.0014820 secs]
[Full GC 65952K->65881K(125952K), 0.0093860 secs]

Full GC 65952K->65881K(125952K)代表的意思是:本次GC后,内存占用从65952K降到了65881K。意思其实是说GC没有将placeHolder回收掉,是不是不可思议?

下面来看看遵循“不使用的对象应手动赋值为null“的情况:

public static void main(String[] args) {
    if (true) {
        byte[] placeHolder = new byte[64 * 1024 * 1024];
        System.out.println(placeHolder.length / 1024);
        placeHolder = null;
    }
    System.gc();
}

其输出为:

65536
[GC 68239K->65952K(125952K), 0.0014910 secs]
[Full GC 65952K->345K(125952K), 0.0099610 secs]

这次GC后内存占用下降到了345K,即placeHolder被成功回收了!对比两段代码,仅仅将placeHolder赋值为null就解决了GC的问题,真应该感谢“不使用的对象应手动赋值为null“。


等等,为什么例子里placeHolder不赋值为null,GC就“发现不了”placeHolder该回收呢?这才是问题的关键所在。


运行时栈


典型的运行时栈


如果你了解过编译原理,或者程序执行的底层机制,你会知道方法在执行的时候,方法里的变量(局部变量)都是分配在栈上的;当然,对于Java来说,new出来的对象是在堆中,但栈中也会有这个对象的指针,和int一样。


比如对于下面这段代码:

public static void main(String[] args) {
    int a = 1;
    int b = 2;
    int c = a + b;
}

其运行时栈的状态可以理解成:

索引 变量

| :-: | :-: |

| 1 | a |

| 2 | b |

| 3 | c |

“索引”表示变量在栈中的序号,根据方法内代码执行的先后顺序,变量被按顺序放在栈中。

再比如:

public static void main(String[] args) {
    if (true) {
        int a = 1;
        int b = 2;
        int c = a + b;
    }
    int d = 4;
}

这时运行时栈就是:

索引 变量

| :-: | :-: |

| 1 | a |

| 2 | b |

| 3 | c |

| 4 | d |


容易理解吧?其实仔细想想上面这个例子的运行时栈是有优化空间的。


Java的栈优化


上面的例子,main()方法运行时占用了4个栈索引空间,但实际上不需要占用这么多。当if执行完后,变量a、b和c都不可能再访问到了,所以它们占用的1~3的栈索引是可以“回收”掉的,比如像这样:


索引 变量

| :-: | :-: |

| 1 | a |

| 2 | b |

| 3 | c |

| 1 | d |


变量d重用了变量a的栈索引,这样就节约了内存空间。


提醒

上面的“运行时栈”和“索引”是为方便理解而使用的词,实际上在JVM中,它们的名字分别叫做“局部变量表”和“Slot”。而且局部变量表在编译时即已确定,不需要等到“运行时”。还请注意


GC一瞥


这里来简单讲讲主流GC里非常简单的一小块:如何确定对象可以被回收。另一种表达是,如何确定对象是存活的。


仔细想想,Java的世界中,对象与对象之间是存在关联的,我们可以从一个对象访问到另一个对象。如图所示。

再仔细想想,这些对象与对象之间构成的引用关系,就像是一张大大的图;更清楚一点,是众多的树。

如果我们找到了所有的树根,那么从树根走下去就能找到所有存活的对象,那么那些没有找到的对象,就是已经死亡的了!这样GC就可以把那些对象回收掉了。

现在的问题是,怎么找到树根呢?JVM早有规定,其中一个就是:栈中引用的对象。也就是说,只要堆中的这个对象,在栈中还存在引用,就会被认定是存活的。


提醒


上面介绍的确定对象可以被回收的算法,其名字是“可达性分析算法”。


JVM的“bug”


我们再来回头看看最开始的例子:

public static void main(String[] args) {
    if (true) {
        byte[] placeHolder = new byte[64 * 1024 * 1024];
        System.out.println(placeHolder.length / 1024);
    }
    System.gc();
}

看看其运行时栈:

LocalVariableTable:
Start  Length  Slot  Name   Signature
    0      21     0  args   [Ljava/lang/String;
    5      12     1 placeHolder   [B

栈中第一个索引是方法传入参数args,其类型为String[];第二个索引是placeHolder,其类型为byte[]。


联系前面的内容,我们推断placeHolder没有被回收的原因:System.gc();触发GC时,main()方法的运行时栈中,还存在有对args和placeHolder的引用,GC判断这两个对象都是存活的,不进行回收。也就是说,代码在离开if后,虽然已经离开了placeHolder的作用域,但在此之后,没有任何对运行时栈的读写,placeHolder所在的索引还没有被其他变量重用,所以GC判断其为存活。


为了验证这一推断,我们在System.gc();之前再声明一个变量,按照之前提到的“Java的栈优化”,这个变量会重用placeHolder的索引。

public static void main(String[] args) {
    if (true) {
        byte[] placeHolder = new byte[64 * 1024 * 1024];
        System.out.println(placeHolder.length / 1024);
    }
    int replacer = 1;
    System.gc();
}

看看其运行时栈:

LocalVariableTable:
Start  Length  Slot  Name   Signature
    0      23     0  args   [Ljava/lang/String;
    5      12     1 placeHolder   [B
   19       4     1 replacer   I

不出所料,replacer重用了placeHolder的索引。来看看GC情况:

65536
[GC 68239K->65984K(125952K), 0.0011620 secs]
[Full GC 65984K->345K(125952K), 0.0095220 secs]

placeHolder被成功回收了!我们的推断也被验证了。


再从运行时栈来看,加上int replacer = 1;和将placeHolder赋值为null起到了同样的作用:断开堆中placeHolder和栈的联系,让GC判断placeHolder已经死亡。


现在算是理清了“不使用的对象应手动赋值为null“的原理了,一切根源都是来自于JVM的一个“bug”:代码离开变量作用域时,并不会自动切断其与堆的联系。为什么这个“bug”一直存在?你不觉得出现这种情况的概率太小了么?算是一个tradeoff了。


总结


希望看到这里你已经明白了“不使用的对象应手动赋值为null“这句话背后的奥义。我比较赞同《深入理解Java虚拟机》作者的观点:在需要“不使用的对象应手动赋值为null“时大胆去用,但不应当对其有过多依赖,更不能当作是一个普遍规则来推广。


目录
相关文章
|
6月前
@Autowired注解获取对象为null
@Autowired注解获取对象为null
56 0
定义好变量,${age}模版字符串,对象可以放null,检验数据类型console.log(typeof str)
定义好变量,${age}模版字符串,对象可以放null,检验数据类型console.log(typeof str)
|
6月前
|
关系型数据库 MySQL 数据处理
实时计算 Flink版产品使用合集之如果在 MySQL 表中为某个字段设置了默认值,并且在插入数据时指定了该字段为 NULL,那么 MySQL 是否会使用默认值来填充这个字段
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
关系型数据库 MySQL 数据库
Flink CDC中mysql 字段设置了默认值 ,然后插入数据时 指定该字段为null 会返回字段默认值 而不是null?
Flink CDC中mysql 字段设置了默认值 ,然后插入数据时 指定该字段为null 会返回字段默认值 而不是null?
236 2
|
6月前
|
SQL JSON Java
Java【问题记录 02】对象封装+固定排序+list All elements are null引起的异常处理+Missing artifact com.sun:tools:jar:1.8.0
Java【问题记录 02】对象封装+固定排序+list All elements are null引起的异常处理+Missing artifact com.sun:tools:jar:1.8.0
76 0
|
6月前
|
JavaScript 前端开发
JavaScript快速删除对象数组中某一个指定元素。注意:是对象数组,如果是数值数组,请慎用!会伤及无辜0、false、英文空格、undefined、null。
JavaScript快速删除对象数组中某一个指定元素。注意:是对象数组,如果是数值数组,请慎用!会伤及无辜0、false、英文空格、undefined、null。
|
前端开发 Java
Java——Native Query设置null参数
Java——Native Query设置null参数
|
设计模式 uml
空对象模式(Null Object Pattern)
空对象模式(Null Object Pattern)不属于GoF设计模式,但是它作为一种经常出现的模式足以被视为设计模式了。其具体定义为设计一个空对象取代NULL对象实例的检查。NULL对象不是检查控制,而是反映一个不做任何动作的关系。这样的NULL对象也可以在数据不可用的时候提供默认的行为,属于行为型设计模式。
92 0
|
算法 Java 开发者
面试必问:对象不再使用时,为什么要赋值为 null ?
面试必问:对象不再使用时,为什么要赋值为 null ?