淘宝Push智能文案生成
作者:方砚
出品:大淘宝技术
本文主要介绍了2021年笔者在智能文案生成项目所做的工作。
业务背景
Push是淘宝重要促活手段之一,运营同学通过投放各类营销、产品Push以达到唤端、促活目的。Push素材通常由人群、商品或者活动、文案构成,与用户有直接沟通的便是Push文案,优质的素材文案吸引用户点击起到正向促活作用,而劣质内容不仅可能影响用户体验,更甚者可能引发用户关闭通道。淘宝Push团队构建了统一投递平台方便各个业务方创建任务投放Push,为业务引流。通常业务同学在创建投放任务前进行Push文案创作,任务上线稳定投放后基本处于维护状态极少进行文案更新。Push业务整体文案多样性低,现有素材库内容同质且单一,基本基于电商视角出发,缺少创新和个性化突破;文案人工创作成本高,当前基本由平台与业务手动创建,依据个人文案创作能力进行输出,缺少丰富文案参考与创意输入;Push平台缺乏对文案的统一沉淀和推荐。历史优秀文案无法及时反馈到文案创建环节,缺乏算法智能化的文案创意。
基于以上问题,业务同学联合淘宝Push算法提出了智能文案生成项目,期望通过文案智能化生产和文案推荐,赋能文案创作、管理、实验、优化各个环节,提升文案丰富程度和更新频率,辅助提升 Push 点击率。
问题定义&思考
素材是Push的基本单元。当一条新素材产生时,用户被新奇的文案吸引点击,素材点击率也随之提升。而随着素材上线时间推移,用户对素材文案疲劳,文案长期得不到更新则素材效果越来越差。而业务方在填写 Push 文案时,也不知道当前场景下什么样的文案是更优的、其预计或历史点击效果如何,不敢贸然更新。如此恶性循环,对整个Push发展非常不利。
现阶段,NLP技术已经有了长足发展, 尤其是Bert、Unilm等等大规模预训练模型的出现,使得从技术层面自动生成高质量内容成为可能。另外,Push平台本身也积累了大量文案数据,可以用于训练文案生成模型,也可以提供给用户作为参考。基于此,我们设计出Push智能文案生成模块,帮助解决以上问题。
智能文案生成V1.0-智能生成模块
架构
一期智能文案生成模块由算法通过TPP服务在线上提供统一交互接口,用户选择合适业务场景的文案生成方式(话术模板生成or关键字生成)并输入关键词,TPP服务根据用户选择调用相应的二方服务生成内容并返回结果。其中,话术模板生成由模板精准匹配、生成文案质量高。关键字生成通过海量数据训练模型、生成内容丰富度高。
内容生成模块: 用户输入关键词如: 活动、场景、利益点等等, 就可以生成大量文案。辅助运营进行文案创作,提升文案多样性,同时也降低了创作成本。
文案检索模块: 将Push平台历史积累的文案处理后开放给用户。用户通过关键词检索,找到符合业务场景的素材文案,根据历史文案的点击,也能预估当前素材的点击率, 做到心中有底。
带你读《2022技术人的百宝黑皮书》——淘宝Push智能文案生成(2) https://developer.aliyun.com/article/1246903?groupCode=taobaotech