带你读《2022技术人的百宝黑皮书》——淘宝Push智能文案生成(1)

简介: 带你读《2022技术人的百宝黑皮书》——淘宝Push智能文案生成(1)

淘宝Push智能文案生成


作者:方砚

出品:大淘宝技术


本文主要介绍了2021年笔者在智能文案生成项目所做的工作。


业务背景


Push是淘宝重要促活手段之一,运营同学通过投放各类营销、产品Push以达到唤端、促活目的。Push素材通常由人群、商品或者活动、文案构成,与用户有直接沟通的便是Push文案,优质的素材文案吸引用户点击起到正向促活作用,而劣质内容不仅可能影响用户体验,更甚者可能引发用户关闭通道。淘宝Push团队构建了统一投递平台方便各个业务方创建任务投放Push,为业务引流。通常业务同学在创建投放任务前进行Push文案创作,任务上线稳定投放后基本处于维护状态极少进行文案更新。Push业务整体文案多样性低,现有素材库内容同质且单一,基本基于电商视角出发,缺少创新和个性化突破;文案人工创作成本高,当前基本由平台与业务手动创建,依据个人文案创作能力进行输出,缺少丰富文案参考与创意输入;Push平台缺乏对文案的统一沉淀和推荐。历史优秀文案无法及时反馈到文案创建环节,缺乏算法智能化的文案创意。


基于以上问题,业务同学联合淘宝Push算法提出了智能文案生成项目,期望通过文案智能化生产和文案推荐,赋能文案创作、管理、实验、优化各个环节,提升文案丰富程度和更新频率,辅助提升 Push 点击率。


问题定义&思考


素材是Push的基本单元。当一条新素材产生时,用户被新奇的文案吸引点击,素材点击率也随之提升。而随着素材上线时间推移,用户对素材文案疲劳,文案长期得不到更新则素材效果越来越差。而业务方在填写 Push 文案时,也不知道当前场景下什么样的文案是更优的、其预计或历史点击效果如何,不敢贸然更新。如此恶性循环,对整个Push发展非常不利。


现阶段,NLP技术已经有了长足发展, 尤其是Bert、Unilm等等大规模预训练模型的出现,使得从技术层面自动生成高质量内容成为可能。另外,Push平台本身也积累了大量文案数据,可以用于训练文案生成模型,也可以提供给用户作为参考。基于此,我们设计出Push智能文案生成模块,帮助解决以上问题。


智能文案生成V1.0-智能生成模块


架构


一期智能文案生成模块由算法通过TPP服务在线上提供统一交互接口,用户选择合适业务场景的文案生成方式(话术模板生成or关键字生成)并输入关键词,TPP服务根据用户选择调用相应的二方服务生成内容并返回结果。其中,话术模板生成由模板精准匹配、生成文案质量高。关键字生成通过海量数据训练模型、生成内容丰富度高。


image.png


内容生成模块: 用户输入关键词如: 活动、场景、利益点等等, 就可以生成大量文案。辅助运营进行文案创作,提升文案多样性,同时也降低了创作成本。


文案检索模块: 将Push平台历史积累的文案处理后开放给用户。用户通过关键词检索,找到符合业务场景的素材文案,根据历史文案的点击,也能预估当前素材的点击率, 做到心中有底。


image.png




带你读《2022技术人的百宝黑皮书》——淘宝Push智能文案生成(2) https://developer.aliyun.com/article/1246903?groupCode=taobaotech


相关文章
|
1月前
|
机器学习/深度学习 数据采集 监控
107_DPO:直接偏好优化
在大型语言模型(LLM)的发展历程中,如何让模型输出与人类偏好保持一致一直是研究的核心挑战。从早期的监督微调(SFT)到基于人类反馈的强化学习(RLHF),再到如今的直接偏好优化(DPO),对齐技术经历了显著的迭代与创新。
|
8月前
|
监控 数据可视化 数据挖掘
【开发者必看—电商篇】数据赋能电商类App转化率循序增长
通过友盟+ 数据分析工具,团队深入分析了用户行为路径、转化漏斗、停留时间及错误事件等关键数据,定位到用户体验与产品性能的问题。经过精准优化,包括简化购物流程、修复技术故障及提升稳定性,最终显著提高了用户转化率。这一案例展示了数据驱动在产品优化中的重要作用。
【开发者必看—电商篇】数据赋能电商类App转化率循序增长
|
机器学习/深度学习 人工智能 算法
深度学习在计算机视觉中的突破与未来趋势###
【10月更文挑战第21天】 近年来,深度学习技术极大地推动了计算机视觉领域的发展。本文将探讨深度学习在图像识别、目标检测和图像生成等方面的最新进展,分析其背后的关键技术和算法,并展望未来的发展趋势和应用前景。通过这些探讨,希望能够为相关领域的研究者和从业者提供有价值的参考。 ###
564 4
|
人工智能 机器人 开发工具
快速部署 Flowise 社区版
FlowiseAI 是一个开源的低代码开发工具,专为开发者构建定制的语言学习模型(LLM)应用而设计。 通过其拖放式界面,用户可以轻松创建和管理AI驱动的交互式应用,如聊天机器人和数据分析工具。 它基于LangChain框架,支持与多种AI模型和数据库集成,实现高度可定制化的流程自动化​。本文介绍通过计算巢快速部署Flowise社区版服务。
快速部署 Flowise 社区版
|
SQL 分布式计算 大数据
MaxCompute操作报错合集之使用spark.sql执行rename分区操作,遇到任务报错退出的情况,该怎么办
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
281 3
|
机器学习/深度学习 自然语言处理
【大模型】如何处理微调LLM来编写创意内容?
【5月更文挑战第7天】【大模型】如何处理微调LLM来编写创意内容?
|
数据挖掘
深入解析ERP系统的人力资源管理模块
深入解析ERP系统的人力资源管理模块
567 1
|
机器学习/深度学习 自然语言处理 监控
带你读《2022技术人的百宝黑皮书》——淘宝Push智能文案生成(8)
带你读《2022技术人的百宝黑皮书》——淘宝Push智能文案生成(8)
264 0
|
API Python
[AIGC] 使用Python刷LeetCode:常用API及技巧指南
[AIGC] 使用Python刷LeetCode:常用API及技巧指南
627 0
|
机器学习/深度学习 算法 PyTorch
使用Pytorch实现对比学习SimCLR 进行自监督预训练
SimCLR(Simple Framework for Contrastive Learning of Representations)是一种学习图像表示的自监督技术。 与传统的监督学习方法不同,SimCLR 不依赖标记数据来学习有用的表示。 它利用对比学习框架来学习一组有用的特征,这些特征可以从未标记的图像中捕获高级语义信息。
1566 1