带你读《2022技术人的百宝黑皮书》——淘宝Push智能文案生成(5) https://developer.aliyun.com/article/1246900?groupCode=taobaotech
这些原因促使我们对智能文案生成做进一步的升级优化,由此设计出智能文案生成2.0版本-淘宝Push文案层。我们在淘宝Push算法推荐链路的召回、粗排、精排、重排最后加入文案层做多文案优选。文案层整体链路如下:
智能文案生成V2.0-淘宝Push文案层链路
淘宝Push文案层优化链路主要由数据源收集、数据处理、物料库更新、内容生成、内容排序、线上服务部署等几个模块构成,其中数据处理、内容生成等模块复用一期沉淀的能力,并将多渠道数据分别处理方式抽象为统一处理组件。下面重点介绍我们在物料库建设以及内容排序模型优化探索的一些工作。
物料库构建
数据决定模型上限,优质丰富的文案内容是训练高质量生成模型的基石。为此,我们收集了多个渠道、不同风格的个性化商品文案。加入文案物料库中以供后续内容生成模块使用,对于适合作为Push投放文案的数据加入文案池中,作为候选文案在线上与生成文案一起排序打分。
文案渠道来源主要有人工创作和模型生成。人工创作文案质量高但数据量有限,模型生成渠道主要是在淘宝不同场景下由算法生成风格各异的文案,此类文案数据丰富但是质量不高。所有渠道文案经过数据处理模块清洗后更新文案物料库 。由于资源限制,自有生成模型日产出数据量有限,且文案风格较为固定。物料库建设极大扩展了商品个性化文案数据量。丰富多样的文案素材为后续文案排序优选和生成模型迭代奠定基础。
内容排序模型
文案物料库建设极大扩展了淘宝Push自有素材文案规模,不同渠道或模型生成文案风格各异,如微淘渠道文案多为商家自行创作内容,文案风格贴近广告。而达人渠道文案偏向从淘宝用户角度描述商品视觉效果、使用体感等等。模型生成内容从商品细节切入描述,如商品材质、风格等等。单个商品候选文案数量提升随之而来的便是如何针对不同用户选择具有吸引力的文案。针对这个问题,我们探索实验了不同类型的排序模型并针对Push场景文案优选进行优化,最终在Push推荐链路上线了文案优选层。
带你读《2022技术人的百宝黑皮书》——淘宝Push智能文案生成(7) https://developer.aliyun.com/article/1246898?groupCode=taobaotech