《家装行业内容算法系列》专题介绍:本专题家装行业过去一年在召回、排序和冷启动等模块中的一些探索和实践经验,在召回侧基于GNN和向量解耦表征技术缓解了零少行为用户推荐的马太效应;排序侧通过模型的在线深度学习、生成式重排、下拉深度优化等技术大幅度提升了内容分发效率和推荐列表的整体收益;在冷启动阶段,通过引入多级流量放大机制和新内容潜力预估模型有效地提升了系统流量新鲜度和内容扶持效率;还有自监督学习与Gradient Normalization技术的一些尝试。
作者:阅谦、豆苗
出品:大淘宝技术
本专题共8篇内容,包含每平每屋过去一年在召回、排序和冷启动等模块中的一些探索和实践经验,本文为该专题第一篇。
在召回侧基于GNN和向量解耦表征技术缓解了零少行为用户推荐的马太效应;排序侧通过模型的在线深度学习、生成式重排、下拉深度优化等技术大幅度提升了内容分发效率和推荐列表的整体收益;在冷启动阶段,通过引入多级流量放大机制和新内容潜力预估模型有效地提升了系统流量新鲜度和内容扶持效率;还有自监督学习与Gradient Normalization技术的一些尝试。
背景
每平每屋是阿里巴巴旗下家居家装平台,涵盖淘宝每平每屋家居频道、每平每屋设计家、每平每屋App、每平每屋制造业等家居全链路服务,为消费者提供了2D短图文、长图文、3D样板间、3D短视频、VR全屋漫游等丰富多元的家居内容,逐渐成为当代年轻人生活灵感与家居装修的向导之一。
淘宝内的每平每屋频道是每平每屋业务获取C端流量并进行内容分发从而建立用户家居、生活方式心智场的主要阵地。在每平每屋频道中,内容主要以场景搭配为主,内容内挂载了多个商品锚点,点击商品锚点可以跳转到商品的详情页完成进一步收藏、购买等行为。
随着业务的快速发展,供给的内容类型和体裁逐渐丰富,内容量级也全面增加,而现有的个性化分发策略难以充分满足内容创作者和内容消费者的诉求。具体地,对于内容消费者而言,希望在平台上获取到优质、实用的内容。对于内容创作者来说,则希望自己发布的内容被更多的人看到和认可。
以效率至上的个性化分发算法虽然能够满足用户的短期诉求,但长期来看会导致平台流量被头部高热内容占据,长尾内容无法得到有效曝光,从而导致部分创作者的内容无法及时获得有效的反馈,生产积极性会大大降低,甚至从平台流失。综上,除了从算法分发的视角来优化平台的流量分配策略外,还需要我们从内容生态的角度来考虑如何激励创作者生产更多优质内容并保证这些内容能够被消费者看到。
带你读《2022技术人的百宝黑皮书》——冷启动系统优化与内容潜力预估实践(2) https://developer.aliyun.com/article/1246887?groupCode=taobaotech