带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(2)

简介: 带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(2)

带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(1) https://developer.aliyun.com/article/1246802?groupCode=taobaotech



召回优化


相关性&多样性


每平每屋无尽流的前身--关联推荐场景更注重推荐内容与引流内容的相关性,整体召回链路相对单一。升级为无尽流形态后,为了提升用户的下拉深度以及点击效率,在多样性和用户个性化层面上要求更高。因此,我们在召回环节中,从引流内容相关度、召回多样性及热门兜底三个维度出发,增加了多条召回链路:


image.png


从多个维度丰富召回内容多样性后,观测线上7天AB指标,内容相关度召回链路累乘指标提升:uctr +10.99%, pctr +20.10%,下拉深度+1.86%,人均点击+22.62%,次均曝光+1.72%;多样性优化召回链路累乘指标提升:uctr +6.23%, pctr +13.25%, 下拉深度+2.41%,人均点击+16.17%, 次均曝光+2.38%;整体上,不同维度的召回优化都给场景点击效率和浏览深度带来了正向提升,其中基于引流内容相关度召回给场景点击率指标带来了较大提升,优化召回多样性后,用户下拉深度提升较大;


粗排


随着召回链路的丰富,各链路召回汇总后内容候选集越来越大,候选集的扩大会增大RTP精排打分压力,使得精排打分RT快速升高。而召回内容的质量决定了精排结果的上限,为了兼顾效率与精度,召回质量更优的内容推到精排打分,我们在无尽流场景中引入粗排模型对召回内容进行初步打分筛选。上线后场景点击效率提升:uctr +2.71%, pctr +5.86%,下拉深度+0.13%,人均点击+2.85%, 次均曝光+0.40%。



带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(3) https://developer.aliyun.com/article/1246800?groupCode=taobaotech

相关文章
|
算法
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(1)
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(1)
118 0
|
机器学习/深度学习 算法 搜索推荐
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(2)
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(2)
150 0
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(2)
|
机器学习/深度学习 人工智能 算法
带你读《2022技术人的百宝黑皮书》——数据与算法篇
带你读《2022技术人的百宝黑皮书》——数据与算法篇
153 0
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(5)
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(5)
|
机器学习/深度学习 智能设计 自然语言处理
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(7)
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(7)
|
算法
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(6)
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(6)
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(3)
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(3)
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(4)
带你读《2022技术人的百宝黑皮书》——无尽流场景优化总结(4)
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(6)
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(6)
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(4)
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(4)

热门文章

最新文章