带你读《2022技术人的百宝黑皮书》——CVPR2022 | 开源: 基于间距自适应查找表的实时图像增强方法(2)

简介: 带你读《2022技术人的百宝黑皮书》——CVPR2022 | 开源: 基于间距自适应查找表的实时图像增强方法(2)

带你读《2022技术人的百宝黑皮书》——CVPR2022 | 开源: 基于间距自适应查找表的实时图像增强方法(1) https://developer.aliyun.com/article/1246795?groupCode=taobaotech




工作动机


由于3D LUT的计算高效性和稳定鲁棒的颜色变换能力,最新的研究工作[2]结合了3D LUT的高效计算性能和深度神经网络的强大数据特征提取能力,通过深度网络从图像中自适应地生成稀疏三维查找表以进行实时色彩增强,证明了3D LUT在基于深度学习的自适应色彩增强中的可行性和有效性。然而,通过深度网络自适应预测稀疏3D LUT时,现有工作仅考虑了3D LUT中记录的输出值的图像自适应性,而却对所有不同图像均采用统一的均匀稀疏点采样策略(将三维输入颜色空间等间隔地离散化成三维网格),未能有效考虑到稀疏3D LUT中采样点在输入空间中的分布也应根据图像内容自适应调整。这一重要建模能力的缺失导致该方法学习到的3D LUT中稀疏采样点分配策略次优,从而限制了最终所得3D LUT的模型变换能力。这具体表现为:由于采样点的稀疏性和3D LUT变换中采用的线性插值带来的非线性变换表达能力的损失,均匀采样策略可能将颜色相近的输入像素量化到3D LUT的同一网格区间内;当这些输入像素的对应输出值需要较高的非线性对比度时(如增强图像中处于暗光条件下具有显著色彩差异的纹理区域时),单个LUT网格却仅能提供线性的颜色拉伸变换,从而可能导致变换结果的颜色平滑。这种现象可以类比为数字信号处理领域中因采样频率不满足奈奎斯特-香农采样定律而导致的信号失真,如下左边示意图所示。理想情况下,增加稀疏采样点的数量或引入非线性插值也许可以有效缓解这种非线性变换能力不足的问题,但也会显著增加3D LUT方法的计算和内存复杂度,牺牲了LUT方法的实时性。此外,如下右半部分的示意图所示,

在均匀采样策略中直接增加采样点的数量也会加剧3D LUT对颜色变换平坦区域(如输出颜色仅为输入颜色的线性拉伸)甚至对输入颜色空间中鲜有像素分布的区域的过采样,从而造成了3D LUT模型容量和内存消耗的浪费。


image.png


方法介绍


针对现有工作因其在输入空间中通过均匀量化间隔的有限稀疏采样点完成3D LUT的构建而存在的局部非线性颜色变换建模能力不足的挑战,我们提出基于采样间距自适应学习的3D LUT方法来为上述挑战提供一种先进的解决方案,即Adaptive Intervals Learning (AdaInt)。具体而言,我们提出并设计一种轻量紧支的三维颜色空间动态采样间隔预测机制,作为3D LUT方法的一种即插即用模块,自适应地根据输入图像内容预测3D LUT中稀疏采样点的分布方式。通过提供给模型在三维颜色空间中自适应、非均匀采样的能力,模型有望在需要较强非线性变换的颜色空间内分配更多的采样点以提高3D LUT的局部非线性变换能力,在变换较为平坦的区域分配较少的采样点以减少3D LUT的容量冗余,从而提高3D LUT方法的灵活性和图像自适应性。


image.png



带你读《2022技术人的百宝黑皮书》——CVPR2022 | 开源: 基于间距自适应查找表的实时图像增强方法(3) https://developer.aliyun.com/article/1246793?groupCode=taobaotech

相关文章
|
机器学习/深度学习 人工智能 算法
AIGC革新商业模式与用户体验
【1月更文挑战第19天】AIGC革新商业模式与用户体验
523 1
AIGC革新商业模式与用户体验
|
机器学习/深度学习 算法 搜索推荐
"震撼揭秘!阿里云AIGC智能图像识别:黑科技如何颠覆你的视界,让图像识别秒变超能力,生活工作全面革新!"
【8月更文挑战第12天】在数字化浪潮中,图像数据激增,高效准确处理成为关键。阿里云智能图像识别服务(AIGC)应运而生,依托深度学习与计算机视觉技术,实现图像特征精确提取与理解。通过大规模数据训练及优化算法,AIGC在图像分类、目标检测等方面表现出色。其应用场景广泛,从电商的商品识别到内容安全审核,再到智能交通和医疗影像分析,均展现出巨大潜力。示例代码展示了AIGC图像生成的基本流程,彰显其技术实力与未来前景。
516 1
springboot优雅的获取yml配置
springboot优雅的获取yml配置
332 0
|
XML 数据安全/隐私保护 数据格式
批量获取FreeSWITCH所有分机号及其密码
批量获取FreeSWITCH所有分机号及其密码
264 0
|
存储 机器学习/深度学习 人工智能
阿里云大数据AI产品年度盘点
阿里云大数据AI产品年度盘点,涵盖2022技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据AI方面最新动态。
阿里云大数据AI产品年度盘点
|
人工智能 vr&ar
【视觉智能AI场景解决方案——AI视频互动娱乐】
如今我们正逐渐进入一个智能化时代,AI视频互动娱乐在娱乐场景中被广泛应用。它利用先进的人工智能技术和互动性强的视频娱乐形式,为用户带来全新的娱乐体验。无论是与虚拟角色互动竞技,还是参与丰富多样的虚拟现实体验,AI视频互动娱乐都能让用户沉浸其中。现如今我们可以在电子游戏、电影、电视节目等传统娱乐形式中见到视觉AI的影子。 那么,AI和我们的生活娱乐中能撞出什么火花?来看看当下最火爆的视频互娱新玩法吧~
1401 3
|
机器学习/深度学习 监控 算法
|
机器学习/深度学习 人工智能 算法
Python+OpenCV 十几行代码模仿世界名画
我最近才发现在 OpenCV 的 Sample 代码中就有图像风格迁移的 Python 示例(原谅我的后知后觉),是基于 ECCV 2016 论文中的网络模型实现。所以,即使作为人工智能的菜鸟,也可以拿别人训练好的模型来玩一玩,体会下神经网络的奇妙。
Python+OpenCV 十几行代码模仿世界名画
|
SQL 存储 Java
Sharding-JDBC 如何实现分片
以上是V 哥在教学过程中实现分片的示例步骤,Sharding-JDBC能够实现SQL的分片操作,将请求路由到正确的数据库和表中,从而实现数据的水平扩展,这是在使用例如 MySQL作为数据库的场景中经常会使用到的,但如果你的企业正在考虑分布式数据库迁移,V 哥建议可以考虑 TiDB 或 OceanBase 这样的分布式数据库,因为它们天然就支持分布式,而不需要考虑这些。
322 0
|
数据可视化 算法 计算机视觉
【计算机视觉】图像增强----图像的傅立叶变换
【计算机视觉】图像增强----图像的傅立叶变换
1147 0
【计算机视觉】图像增强----图像的傅立叶变换