m基于FPGA的QPSK调制解调通信系统verilog实现,包含testbench,不包含载波同步

简介: m基于FPGA的QPSK调制解调通信系统verilog实现,包含testbench,不包含载波同步

1.算法仿真效果

本系统进行了两个平台的开发,分别是:

Vivado2019.2

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition

其中Vivado2019.2仿真结果如下:
33aaa1234e3c9a042cd60b27676608c9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
9dcf2c91f9bdd7818da02deced37f3ec_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition的测试结果如下:
d160241b97524819898053b3af04579e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
09b5ab54601b9014e6b5e7db1fd8b9de_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
QPSK是一种数字调制方式,它将两个二进制比特映射到一个符号上,使得每个符号代表四种可能的相位状态。因此,QPSK调制解调系统可以实现更高的传输速率和更高的频谱效率。基于FPGA的QPSK调制解调系统通常由以下几个模块组成:

数据生成模块:生成要传输的二进制数据流。
QPSK调制模块:将二进制数据流转换为符号序列,并将每个符号映射到特定的相位状态。
QPSK解调模块:将接收到的符号序列解调为二进制数据流。
下面将详细介绍每个模块的原理和实现方法。

QPSK调制模块
QPSK调制模块将二进制数据流转换为符号序列,并将每个符号映射到特定的相位状态。QPSK调制使用四个相位状态,分别为0度、90度、180度和270度。在QPSK调制中,每个符号代表两个比特,因此,输入二进制数据流的速率必须是符号速率的两倍。
QPSK调制模块通常使用带有正弦和余弦输出的正交调制器(I/Q调制器)来实现。在I/Q调制器中,输入信号被分成两路,一路被称为“正交(I)路”,另一路被称为“正交(Q)路”。每个输入符号被映射到一个特定的正交信号,然后通过合成器将两个信号相加,形成QPSK调制信号。
ee69134d5eea0d0798875ac2265fbf92_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

QPSK解调模块
QPSK解调模块将接收到的符号序列解调为二进制数据流。解调模块使用相干解调器来实现,相干解调器可以将接收到的信号分解成两个正交分量,然后将它们与本地正交信号相乘,得到原始的QPSK符号。解调器的输出是一个复数,需要进行幅值解调和相位解调才能得到原始的二进制数据流。

b1d83ab3a3d9a63002a4d941a03c8479_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

基于FPGA的QPSK调制解调系统的开发过程。
首先需要选择适合的FPGA平台和开发工具。常用的FPGA平台有Xilinx和Altera,开发工具包括Vivado,以及Altera Quartus。选择FPGA平台和开发工具需要考虑系统的要求和开发人员的经验。
系统设计
系统设计包括确定系统的功能、模块划分和接口设计。在QPSK调制解调系统中,需要确定每个模块的功能和接口,并确定数据流的方向和速率。在设计过程中,需要考虑系统的性能、资源占用和延迟等因素。
模块实现是基于FPGA的QPSK调制解调系统开发的核心部分。在模块实现过程中,需要使用硬件描述语言(HDL)编写代码,并使用仿真工具进行验证。常用的HDL语言有VHDL和Verilog,仿真工具包括ModelSim和ISE Simulator。
基于FPGA的QPSK调制解调系统是一种高效、可靠的数字通信系统。通过使用FPGA平台和硬件描述语言,可以实现高性能、低延迟、低功耗的QPSK调制解调系统。在开发过程中,需要考虑系统的功能、性能、资源占用和延迟等因素。通过系统测试,可以确保系统的正确性和可靠性。

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2023/05/03 05:57:40
// Design Name:
// Module Name: TQPSK
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module TQPSK(
input i_clk,
input i_rst,
input i_Ibits,
input i_Qbits,

output signed[15:0]o_Ifir,
output signed[15:0]o_Qfir,
output signed[15:0]o_cos,
output signed[15:0]o_sin,
output reg signed[31:0]o_modc,
output reg signed[31:0]o_mods,
output signed[31:0]o_mod
);

wire signed[1:0] w_Inz=(i_Ibits == 1'b1)?2'b01:2'b11;
wire signed[1:0] w_Qnz=(i_Qbits == 1'b1)?2'b01:2'b11;

//成型滤波
fiter uut1(
.i_clk (i_clk),
.i_rst (i_rst),
.i_din (w_Inz),
.o_dout (o_Ifir)
);

fiter uut2(
.i_clk (i_clk),
.i_rst (i_rst),
.i_din (w_Qnz),
.o_dout (o_Qfir)
);
//DDS
wire [9:0]mcos;
wire [9:0]msin;
NCO_Trans NCO_Trans_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_K (10'd512),
.o_cos (mcos),
.o_sin (msin)
);
assign o_cos={mcos,6'd0};
assign o_sin={msin,6'd0};
//调制QPSK
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
o_modc <= 32'd0;
o_mods <= 32'd0;
end
else begin
o_modc <= $signed(o_Ifir)*$signed(o_cos);
o_mods <= $signed(o_Qfir)*$signed(o_sin);
end
end

assign o_mod=o_modc+o_mods;
endmodule
```

相关文章
|
14天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
108 74
|
22天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的信号发生器verilog实现,可以输出方波,脉冲波,m序列以及正弦波,可调整输出信号频率
本项目基于Vivado2019.2实现信号发生器,可输出方波、脉冲波、m随机序列和正弦波。完整程序无水印,含详细中文注释与操作视频。FPGA技术使信号发生器精度高、稳定性强、功能多样,适用于电子工程、通信等领域。方波、脉冲波、m序列及正弦波的生成原理分别介绍,代码核心部分展示。
|
12天前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的16psk调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的16PSK调制解调系统的硬件测试版本。系统在原有仿真基础上增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同信噪比下的性能测试。16PSK通过改变载波相位传输4比特信息,广泛应用于高速数据传输。硬件测试操作详见配套视频。开发板使用及移植方法也一并提供。
27 6
|
19天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的8PSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现8PSK调制解调系统,包含高斯信道、误码率统计、ILA数据采集和VIO在线SNR设置模块。通过硬件测试和Matlab仿真,展示了不同SNR下的星座图。8PSK调制通过改变载波相位传递信息,具有高频谱效率和抗干扰能力。开发板使用及程序移植方法详见配套视频和文档。
33 7
|
13天前
|
存储 编解码 算法
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
146 69
|
1月前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
74 26
|
2月前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
79 8
|
2月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
79 11
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
56 1

热门文章

最新文章