m基于FPGA的QPSK调制解调通信系统verilog实现,包含testbench,不包含载波同步

简介: m基于FPGA的QPSK调制解调通信系统verilog实现,包含testbench,不包含载波同步

1.算法仿真效果

本系统进行了两个平台的开发,分别是:

Vivado2019.2

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition

其中Vivado2019.2仿真结果如下:
33aaa1234e3c9a042cd60b27676608c9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
9dcf2c91f9bdd7818da02deced37f3ec_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition的测试结果如下:
d160241b97524819898053b3af04579e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
09b5ab54601b9014e6b5e7db1fd8b9de_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
QPSK是一种数字调制方式,它将两个二进制比特映射到一个符号上,使得每个符号代表四种可能的相位状态。因此,QPSK调制解调系统可以实现更高的传输速率和更高的频谱效率。基于FPGA的QPSK调制解调系统通常由以下几个模块组成:

数据生成模块:生成要传输的二进制数据流。
QPSK调制模块:将二进制数据流转换为符号序列,并将每个符号映射到特定的相位状态。
QPSK解调模块:将接收到的符号序列解调为二进制数据流。
下面将详细介绍每个模块的原理和实现方法。

QPSK调制模块
QPSK调制模块将二进制数据流转换为符号序列,并将每个符号映射到特定的相位状态。QPSK调制使用四个相位状态,分别为0度、90度、180度和270度。在QPSK调制中,每个符号代表两个比特,因此,输入二进制数据流的速率必须是符号速率的两倍。
QPSK调制模块通常使用带有正弦和余弦输出的正交调制器(I/Q调制器)来实现。在I/Q调制器中,输入信号被分成两路,一路被称为“正交(I)路”,另一路被称为“正交(Q)路”。每个输入符号被映射到一个特定的正交信号,然后通过合成器将两个信号相加,形成QPSK调制信号。
ee69134d5eea0d0798875ac2265fbf92_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

QPSK解调模块
QPSK解调模块将接收到的符号序列解调为二进制数据流。解调模块使用相干解调器来实现,相干解调器可以将接收到的信号分解成两个正交分量,然后将它们与本地正交信号相乘,得到原始的QPSK符号。解调器的输出是一个复数,需要进行幅值解调和相位解调才能得到原始的二进制数据流。

b1d83ab3a3d9a63002a4d941a03c8479_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

基于FPGA的QPSK调制解调系统的开发过程。
首先需要选择适合的FPGA平台和开发工具。常用的FPGA平台有Xilinx和Altera,开发工具包括Vivado,以及Altera Quartus。选择FPGA平台和开发工具需要考虑系统的要求和开发人员的经验。
系统设计
系统设计包括确定系统的功能、模块划分和接口设计。在QPSK调制解调系统中,需要确定每个模块的功能和接口,并确定数据流的方向和速率。在设计过程中,需要考虑系统的性能、资源占用和延迟等因素。
模块实现是基于FPGA的QPSK调制解调系统开发的核心部分。在模块实现过程中,需要使用硬件描述语言(HDL)编写代码,并使用仿真工具进行验证。常用的HDL语言有VHDL和Verilog,仿真工具包括ModelSim和ISE Simulator。
基于FPGA的QPSK调制解调系统是一种高效、可靠的数字通信系统。通过使用FPGA平台和硬件描述语言,可以实现高性能、低延迟、低功耗的QPSK调制解调系统。在开发过程中,需要考虑系统的功能、性能、资源占用和延迟等因素。通过系统测试,可以确保系统的正确性和可靠性。

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2023/05/03 05:57:40
// Design Name:
// Module Name: TQPSK
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module TQPSK(
input i_clk,
input i_rst,
input i_Ibits,
input i_Qbits,

output signed[15:0]o_Ifir,
output signed[15:0]o_Qfir,
output signed[15:0]o_cos,
output signed[15:0]o_sin,
output reg signed[31:0]o_modc,
output reg signed[31:0]o_mods,
output signed[31:0]o_mod
);

wire signed[1:0] w_Inz=(i_Ibits == 1'b1)?2'b01:2'b11;
wire signed[1:0] w_Qnz=(i_Qbits == 1'b1)?2'b01:2'b11;

//成型滤波
fiter uut1(
.i_clk (i_clk),
.i_rst (i_rst),
.i_din (w_Inz),
.o_dout (o_Ifir)
);

fiter uut2(
.i_clk (i_clk),
.i_rst (i_rst),
.i_din (w_Qnz),
.o_dout (o_Qfir)
);
//DDS
wire [9:0]mcos;
wire [9:0]msin;
NCO_Trans NCO_Trans_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_K (10'd512),
.o_cos (mcos),
.o_sin (msin)
);
assign o_cos={mcos,6'd0};
assign o_sin={msin,6'd0};
//调制QPSK
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
o_modc <= 32'd0;
o_mods <= 32'd0;
end
else begin
o_modc <= $signed(o_Ifir)*$signed(o_cos);
o_mods <= $signed(o_Qfir)*$signed(o_sin);
end
end

assign o_mod=o_modc+o_mods;
endmodule
```

相关文章
|
13天前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的1024QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的1024QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同SNR条件下的性能测试。1024QAM调制将10比特映射到复平面上的1024个星座点之一,实现高效数据传输。硬件测试结果表明,在SNR=32dB和40dB时,系统表现出良好的性能。Verilog核心程序展示了各模块的连接与功能实现。
38 7
|
7天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的4ASK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的4ASK调制解调系统的硬件测试版本,该系统包括testbench、高斯信道模块和误码率统计模块,并新增了ILA在线数据采集和VIO在线SNR设置功能。通过VIO设置不同SNR(如15dB和25dB),实现了对系统性能的实时监测与调整。4ASK是一种通过改变载波幅度表示数据的数字调制方式,适用于多种通信场景。FPGA平台的高效性和灵活性使其成为构建高性能通信系统的理想选择。
53 17
|
10天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的4FSK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于之前的文章《基于FPGA的4FSK调制解调系统》,增加了ILA在线数据采集模块和VIO在线SNR设置模块,实现了硬件测试版本。通过VIO设置不同SNR(如10dB和20dB),并展示了ILA采集的数据结果。四频移键控(4FSK)是一种数字调制方法,利用四个不同频率传输二进制数据,具有较高的频带利用率和抗干扰性能。输入的二进制数据分为两组,每组两个比特,对应四个频率f1、f2、f3、f4,分别代表二进制组合00、01、10、11。调制过程中选择相应频率输出,并进行幅度调制以增强抗干扰能力。接收端通过带通滤波器提取信号并还原为原始二进制数据。
31 7
|
14天前
|
数据采集 算法 数据处理
【硬件测试】基于FPGA的256QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的256QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同信噪比(如30dB和40dB)的仿真测试,并提供配套操作视频。256QAM调制方案每个符号携带8比特信息,通过复数值星座图映射实现高效传输。Verilog代码展示了核心模块设计,包括SNR设置、数据处理和ILA测试分析,确保系统在实际硬件环境中的稳定性和性能。
17 2
|
18天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的16QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的16QAM基带通信系统硬件测试版本。该系统在仿真基础上增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同信噪比(如15dB、25dB)的测试。16QAM是一种正交幅度调制方式,通过两路4ASK信号叠加实现,每个符号包含4比特信息。系统采用正交调幅法生成16QAM信号,并通过DAC转换为模拟信号。解调时使用正交相干解调,经低通滤波器恢复电平信号。开发板内完成发射与接收,无需定时同步模块。代码可移植至其他开发板,具体步骤见配套文档。
26 2
|
15天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的64QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的64QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集模块和vio在线SNR设置模块,支持不同SNR条件下的仿真与测试。通过设置SNR为25dB和30dB进行测试,验证了系统的可行性和性能。此外,本文详细阐述了64QAM调制解调的工作原理,包括信号生成、调制、解调及误码率测试等环节,并提供了Verilog核心程序代码。
20 0
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
138 74
|
14天前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
193 69
|
3月前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
117 26

热门文章

最新文章