CAD数据文件格式DXF部分实体(圆弧、椭圆、凸度)解析[原理讲解+公式推导+java实现]

简介: CAD数据文件格式DXF部分实体(圆弧、椭圆、凸度)解析[原理讲解+公式推导+java实现]

CAD图像读取与显示说明

  如果想要开发一个可以读取dxf图像的软件,为了方便图像在软件中的绘制,往往会将图形进行离散称为一系列点,然后将一系列点按照顺序相连即可绘制出图形。

8d05ad9c3d234e51bb6653339eb8b4ae.png



7c7fe7c1419e4e5eb53283fc60de8eab.png

软件系统界面  软件系统界面的图形正是通过离散之后的点集绘制而成的,通过观察上面的两个图,可以发现用肉眼几乎看不出差异,说明通过连接离散点的方式来绘制图形在日常应用中绰绰有余。本文主要讲解一下一些复杂图形实体的离散。


官方实体说明

实体中文文档说明

实体

圆弧

dxf记录信息


4975d3bc3e0840218c7304a1e4339312.png

看到上面的信息,你是不是已经笑出声来,“这不是小学二年级的知识吗,简单,咔咔两下解决”



代码实现

    /**
     * 离散圆弧
     * 注意:起始角度、终止角度需要传入弧度制
     *
     * @param centerX
     * @param centerY
     * @param radius
     * @param startRadian 起始弧度
     * @param endRadian 终止弧度
     * @param discreteRadian 离散弧度,每隔多少绘制一个点
     * @param xList 记录离散点集的x坐标
     * @param yList 记录离散点集的y坐标
     */
    private void discreteArc(double centerX, double centerY, double radius, double startRadian, double endRadian, double discreteRadian,
                             List<Float> xList, List<Float> yList) {
        if (endRadian < startRadian) {
            endRadian += 2 * Math.PI;
        }
        double radian = startRadian;
        while (radian < endRadian) {
            float tempX = (float) (centerX + radius * Math.cos(radian));
            float tempY = (float) (centerY + radius * Math.sin(radian));
            xList.add(tempX);
            yList.add(tempY);
            radian += discreteRadian;
        }
        //添加最终的点
        float tempX = (float) (centerX + radius * Math.cos(endRadian));
        float tempY = (float) (centerY + radius * Math.sin(endRadian));
        xList.add(tempX);
        yList.add(tempY);
    }


测试



4acb6ba3174047ab9a50efead55e510e.png


优化多段线的凸度

dxf记录信息


  为了用户可以在绘制图形的时候可以一气呵成,CAD为用户提供了优化多段线,优化多段线中也可以绘制圆弧,但是这里可没有告诉我们圆弧的圆心,周长,圆弧起始角度和终止角度这些,只给了一个凸度信息。

  如何根据凸度推导出圆弧的圆心和半径,可以参考大佬的文章[已知圆弧的起点端点和凸度计算圆心](https://blog.csdn.net/jiangyb999/article/details/89366912)

根据所引用文章可知最终结论

  那至于要怎么离散呢,如果求出了圆弧的信息了,那离散的方式直接使用上面所提到的圆弧离散方法即可

代码实现

/**
     * 获取圆弧的圆心、起点角度、终点角度
     *
     * @param x1
     * @param y1
     * @param x2
     * @param y2
     * @param convexity 凸度:圆弧段四分之一夹角的正切值;凸度为0表示直线段;凸度为1表示半圆;凸度大于0,向里面凹;凸度小于0,向外面凸
     * @return
     */
    private double[] getArcMessage(double x1, double y1, double x2, double y2, double convexity) {
        double b = (1.0 / 2) * (1.0 / convexity - convexity);
        计算圆弧圆心
        //圆心坐标
        double centerX = 0.5 * ((x1 + x2) - b * (y2 - y1));
        double centerY = 0.5 * ((y1 + y2) + b * (x2 - x1));
        计算起点和终点所对应的角度
        double startRadian = MathUtil.getRadianByPoint(x1 - centerX, y1 - centerY);
        double endRadian = MathUtil.getRadianByPoint(x2 - centerX, y2 - centerY);
        if (convexity < 0) {
            double temp = startRadian;
            startRadian = endRadian;
            endRadian = temp;
        }
        计算圆弧半径
        double radius = MathUtil.getDistanceOfTwoPoint(x1, y1, centerX, centerY);
        存储圆弧信息
        double[] message = new double[5];
        message[0] = centerX;
        message[1] = centerY;
        message[2] = radius;
        message[3] = startRadian;
        message[4] = endRadian;
  /*      System.out.println("根据两点及其之间的凸度获取圆弧信息-------------------------------------------------------------------------------------");
        System.out.println("x1:" + x1 + ";y1:" + y1 + ";x2:" + x2 + ";y2:" + y2 + ";convexity:" + tempConvexity);
        System.out.println("centerX:" + centerX + ";centerY:" + centerY + ";radius:" + radius + ";startDegree:" + Math.toDegrees(startRadian) + ";endDegree:" + Math.toDegrees(endRadian));
        System.out.println("凸度解析完成---------------------------------------------------------------------------------------------------------");
        System.out.println();*/
        return message;
    }


  MathUtil.getRadianByPoint:获取一个向量和(1,0)向量的夹角(弧度制)

   /**
     * 已知 x、y,求角度 0,2PI
     * 获取(x,y)与x轴正方向(1,0)的夹角
     *
     * @param x
     * @param y
     * @return
     */
    public static double getRadianByPoint(double x, double y) {
        double acos = Math.acos(x / Math.sqrt(x * x + y * y));
        double radian = y > 0 ? acos : (2 * Math.PI - acos);
        if (radian < 0 || radian > 2 * Math.PI) {
            System.out.println("radian:" + radian);
            System.out.println(1 / 0);
        }
        return radian;
    }


 MathUtil.getDistanceOfTwoPoint:获取两点之间的直线距离

 /**
     * 获取两个点之间的距离
     *
     * @return
     */
    public static double getDistanceOfTwoPoint(double x1, double y1, double x2, double y2) {
        return Math.sqrt(Math.pow(x1 - x2, 2) + Math.pow(y1 - y2, 2));
    }


测试



7ac8478355a14a7c94e00fb359a9bafe.png

椭圆

dxf记录信息


  看完上面的信息,你可能会一脸疑惑,心想:“啥呀这是,长轴端点是啥子哦,高中也mei学啊”

  高中的椭圆都是老老实实趴在坐标原点,但是CAD的椭圆因为要满足更多的奇形怪状的图形,于是身法需要飘忽不定,不讲武德,莫急,待老夫降伏它。



 相较于中心的长轴端点其实就是(x,y)=(x2-x1,y2-y1)(别问我怎么知道的,我是在CAD画图然后反推出来的,宝宝心里苦),这下是不是豁然开朗了,至于位置椭圆不是水平的,圆形也不在坐标原点。只需要先将椭圆的位置掰正,就可以调用椭圆公式了,最后再将得到的离散点坐标通过旋转和平移即可回到原位,不说了 ,直接操作一手代码。


代码实现

  /**
     * 离散椭圆
     * 注意:需要传入弧度
     *
     * @param centerX        椭圆圆心
     * @param centerY        椭圆圆心
     * @param axisDirectionX 相较于中心的长轴端点x坐标
     * @param axisDirectionY 相较于中心的长轴端点y坐标
     * @param aspectRatio    短轴/长轴
     * @param startRadian    起始弧度 (对于闭合椭圆,该值为 0.0)
     * @param endRadian      终止弧度 (对于闭合椭圆,该值为 2pi)
     * @param discreteRadian 离散弧度
     * @param xListList
     * @param yListList
     */
    private void discreteEllipse(float centerX, float centerY, float axisDirectionX, float axisDirectionY, float aspectRatio, float startRadian, float endRadian, double discreteRadian,
                                 List<List<Float>> xListList, List<List<Float>> yListList) {
        List<Float> xList = new ArrayList<>();
        List<Float> yList = new ArrayList<>();
        //长轴长度
        double a = Math.sqrt(Math.pow(axisDirectionX, 2) + Math.pow(axisDirectionY, 2));
        //短轴长度
        double b = aspectRatio * a;
        //计算椭圆端点偏转角度(0,360)
        double degree = Math.toDegrees(MathUtil.getRadianByPoint(axisDirectionX, axisDirectionY));
        //重新处理startRadian和endRadian
        startRadian = (float) Math.toRadians(Math.toDegrees(startRadian));
        endRadian = (float) Math.toRadians(Math.toDegrees(endRadian));
        double radian = startRadian;
        while (radian < endRadian) {
            double x = centerX + a * Math.cos(radian);
            double y = centerY + b * Math.sin(radian);
            //将坐标旋转 degree
            double[] rotate = MathUtil.rotate(x, y, centerX, centerY, degree);
            xList.add((float) rotate[0]);
            yList.add((float) rotate[1]);
            radian += discreteRadian;
        }
        //添加最终的点
        double x = centerX + a * Math.cos(endRadian);
        double y = centerY + b * Math.sin(endRadian);
        //将坐标旋转 degree
        double[] rotate = MathUtil.rotate(x, y, centerX, centerY, degree);
        xList.add((float) rotate[0]);
        yList.add((float) rotate[1]);
        xListList.add(xList);
        yListList.add(yList);
    }

 旋转方法 MathUtil.rotate

 /**
     * 将(x1,y1)绕着(x2,y2)逆时针旋转rotateDegree
     *
     * @param x1
     * @param y1
     * @param x2
     * @param y2
     * @param rotateDegree
     * @return
     */
    public static double[] rotate(double x1, double y1, double x2, double y2, double rotateDegree) {
        double[] arr = new double[2];
        //根据角度求弧度
        double radian = (rotateDegree * 1.0 / 180) * Math.PI;
        //旋转
        arr[0] = (x1 - x2) * Math.cos(radian) - (y1 - y2) * Math.sin(radian) + x2;
        arr[1] = (y1 - y2) * Math.cos(radian) + (x1 - x2) * Math.sin(radian) + y2;
        return arr;
    }


测试


3ddb8aa80c014a9f8f88b15e6d527f6e.png


引用

图片引用

[脑瓜疼表情包]脑瓜疼

[一脸疑惑表情包]一脸疑惑

目录
相关文章
|
3月前
|
Java API 开发工具
【Azure Developer】Java代码实现获取Azure 资源的指标数据却报错 "invalid time interval input"
在使用 Java 调用虚拟机 API 获取指标数据时,因本地时区设置非 UTC,导致时间格式解析错误。解决方法是在代码中手动指定时区为 UTC,使用 `ZoneOffset.ofHours(0)` 并结合 `withOffsetSameInstant` 方法进行时区转换,从而避免因时区差异引发的时间格式问题。
205 3
|
4月前
|
数据采集 JSON Java
Java爬虫获取1688店铺所有商品接口数据实战指南
本文介绍如何使用Java爬虫技术高效获取1688店铺商品信息,涵盖环境搭建、API调用、签名生成及数据抓取全流程,并附完整代码示例,助力市场分析与选品决策。
|
4月前
|
数据采集 存储 前端开发
Java爬虫性能优化:多线程抓取JSP动态数据实践
Java爬虫性能优化:多线程抓取JSP动态数据实践
|
2月前
|
Java Unix Go
【Java】(8)Stream流、文件File相关操作,IO的含义与运用
Java 为 I/O 提供了强大的而灵活的支持,使其更广泛地应用到文件传输和网络编程中。!但本节讲述最基本的和流与 I/O 相关的功能。我们将通过一个个例子来学习这些功能。
177 1
|
3月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
229 16
|
5月前
|
存储 Java 编译器
深入理解Java虚拟机--类文件结构
本内容介绍了Java虚拟机与Class文件的关系及其内部结构。Class文件是一种与语言无关的二进制格式,包含JVM指令集、符号表等信息。无论使用何种语言,只要能生成符合规范的Class文件,即可在JVM上运行。文章详细解析了Class文件的组成,包括魔数、版本号、常量池、访问标志、类索引、字段表、方法表和属性表等,并说明其在Java编译与运行过程中的作用。
139 0
|
5月前
|
存储 人工智能 Java
java之通过Http下载文件
本文介绍了使用Java实现通过文件链接下载文件到本地的方法,主要涉及URL、HttpURLConnection及输入输出流的操作。
313 0
|
9月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
845 29
|
9月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
343 4
|
9月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~

推荐镜像

更多
  • DNS