数据结构学习分享之树的介绍

简介: 前面我们学的都是链式结构或数组这种线性结构,今天我们正式开始学习"树"这个结构.树涉及的问题有很多,包括普通树,二叉树,二叉树又分完全二叉树和非完全二叉树,而我们要掌握的结构"堆"其本质就是一种完全二叉树, 所以在开始讲堆之前,我们应该先了解一些树相关的知识

1. 前言🚩


前面我们学的都是链式结构或数组这种线性结构,今天我们正式开始学习"树"这个结构.树涉及的问题有很多,包括普通树,二叉树,二叉树又分完全二叉树和非完全二叉树,而我们要掌握的结构"堆"其本质就是一种完全二叉树, 所以在开始讲堆之前,我们应该先了解一些树相关的知识


2. 树的概念以及结构🚩


2.1 树的概念🏁

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的.


有一个特殊的结点,称为根结点,根节点没有前驱结点.

除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继

树是递归定义的。

平平无奇的一棵树:

62d4593df9b015267830b3957ab04c2.png



注意,子树之间是不能又交集的,否则就不能称为树结构:


f856b29e784f70ddcbcfcaeb7c63ff7.png


2.2 树的相关概念🏁

有一些专有名词需要我们了解,我这里给出一个图方便理解:


87004afad5ebb9259a04a3177a49d0c.png




节点的度:一个节点含有的子树的个数称为该节点的度;如上图:A的为6

叶节点或终端节点:度为0的节点称为叶节点;如上图:B、C、H、I…等节点为叶节点

非终端节点或分支节点:度不为0的节点;如上图:D、E、F、G…等节点为分支节点

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;如上图:A是B的父节点孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;如上图:B是A的孩子节点

兄弟节点:具有相同父节点的节点互称为兄弟节点;如上图:B、C是兄弟节点

树的度:一棵树中,最大的节点的度称为树的度;如上图:树的度为6

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或深度:树中节点的最大层次;如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林;

这里我将常见的并且用的比较多的概念换了一个颜色


2.3 树的表示(代码实现)🏁

表示树形结构有很多种方式,比如:


方法一:提前知道树的度数为N

struct TreeNode
{
   int data;
   struct TreeNode* subs[N];//存储此节点的孩子,最多有N个孩子
}


这里前提我们知道树的度,也就是一个节点最大的孩子树,我们可以设计一个结构体,里面存储当前节点要存储的值,并且在结构体中定义一个结构体数组来存储此节点的孩子.


这里表示树的结构的方式有很多,我就不做一一介绍,接下来介绍一个最屌的结构也是最常用的结构:左孩子右兄弟法!

我们用这个树来举个例子:


8b18145e3c1a88ecfcc82eabf8a91d1.png


typedef int DataType;
struct Node
{
 struct Node* firstChild1; // 第一个孩子结点
 struct Node* NextBrother; // 指向其下一个兄弟结点
 DataType data; // 结点中的数据域
}


这种结构属于是牛人才能想出来!这里我们画图理解一下:


a2e687f31d1223c35d41821123c62d2.png


这样我们就可以依次把所有节点都遍历一遍了


3. 二叉树的概念以及结构🚩




数中这么复杂的结构,最常用的还是二叉树,这里就引出二叉树的概念




3.1 二叉树概念🏁

一棵二叉树是结点的一个有限集合,该集合:


或者为空



由一个根节点加上两棵别称为左子树和右子树的二叉树组成



二叉树不存在度大于2的结点



二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树


注意:对于任意的二叉树都是由以下几种情况复合而成的:(这些情况以及这些情况的组合情况都称为二叉树)


4003bcd2013400da7316830b7e9ddac.png


有人说可以用下面这张图辨别一个人是不是程序员,如果他看见图的第一眼想到的是:这不就是个满二叉树嘛,那么他大概率是程序员!



72070c77f0a3100d7aa30f5e7771716.png



3.2 特殊的二叉树🏁

满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是

说,如果一个二叉树的层数为K,且结点总数是2k-1 ,则它就是满二叉树。

完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K

的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对

应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。


d52087c1f794e30d7bbccecaa5b0bb5.png

3.3 二叉树的性质🏁

若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2i-1个结点.

若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2h-1 .

对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 ,则有 n0=n2 +1

若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log2(n+1) .

对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点

若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩

若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

因为这一章节是全新的内容,所以定义和性质很多,请大家要耐心阅读!


3.4 二叉树的存储结构🏁

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构:


顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空

间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺

序存储在物理上是一个数组,在逻辑上是一颗二叉树。

这里非完全二叉树存储在顺序结构中时,数组中有空元素,而完全二叉树存储时没有空元素

5590ce89f94206f670be51f5cf7fec5.png

链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是

链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所

在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程

学到高阶数据结构如红黑树等会用到三叉链。

a116befc83552020a07dff27ae9df83.png


我们可以发现,非完全二叉树不适合用数组的方式来存储,然而我们的完全二叉树(包括满二叉树)就非常适合用数组的形式存储,因为它的物理存储结构是连续的,不会在数组中留空格


4. 总结🚩


. 这篇文章主要带大家了解一下树的相关知识,为我们后面学习二叉树和堆打好基础,其实堆的本质就是一颗完全二叉树,所以我们实现堆时就是用数组的结构来实现的,而我们的非完全二叉树即用链式结构来实现的.这些内容我下一篇文章为大家讲解


 


相关文章
|
3月前
|
算法
数据结构之博弈树搜索(深度优先搜索)
本文介绍了使用深度优先搜索(DFS)算法在二叉树中执行遍历及构建链表的过程。首先定义了二叉树节点`TreeNode`和链表节点`ListNode`的结构体。通过递归函数`dfs`实现了二叉树的深度优先遍历,按预序(根、左、右)输出节点值。接着,通过`buildLinkedList`函数根据DFS遍历的顺序构建了一个单链表,展示了如何将树结构转换为线性结构。最后,讨论了此算法的优点,如实现简单和内存效率高,同时也指出了潜在的内存管理问题,并分析了算法的时间复杂度。
81 0
|
1月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
64 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
1月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
52 12
|
1月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
50 10
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
54 2
|
3月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
103 5
|
3月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
3月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
162 16
|
3月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
3月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!