用Python实现一个基础的神经网络模型

简介: 用Python实现一个基础的神经网络模型

目录

前言

一、神经元

1.1一个简单的例子

1.2编码一个神经元

1.3把神经元组装成网络

二、前馈

三、训练神经网络

四、总结


前言

       可能一提到神经网络,许多小伙伴就会感觉头大,不知道看眼前的你又是怎样的感受呢?【神经网络】这个词听起来让人觉得很高大上,但实际上神经网络算法要比人们想象的简单。今天我将手把手教你用Python来实现一个基础的神经网络模型,理解其背后的原理。

一、神经元

       首先让我们看看神经网络的基本单位,神经元。神经元接受输入,对其做一些数据操作,然后产生输出。例如,这是一个2-输入神经元:

69bca166f7695679eaa7b45bf4627597_d17c339ce99f435f8aa823c36867a6ef.png

这里发生了三个事情。首先,每个输入都跟一个权重相乘(红色):

c1ad94f985a2e4aa429eb3ece38dc5ca_333daf658f034c3a999c2295a1359b22.png

然后,加权后的输入求和,加上一个偏差b(绿色):

82021a2e1e88a303dc885a46a1c50c48_1e501fb91b8b4e65a55ac86a425baafd.png

激活函数的用途是将一个无边界的输入,转变成一个可预测的形式。常用的激活函数就就是S型函数:

bd4f8b90ac2e77185be824ede57c913f_c415937735954ca5bc5f0489f1e93a4e.png

S型函数的值域是(0, 1)。简单来说,就是把(−∞, +∞)压缩到(0, 1) ,很大的负数约等于0,很大的正数约等于1。

1.1一个简单的例子

假设我们有一个神经元,激活函数就是S型函数,其参数如下:

6cb015c07cb818e7e02b95023ab606cf_1fd97ed050484283a2f3bd8960c4abcb.png

w=[0,1] 就是以向量的形式表示w1=0,w2=1。现在,我们给这个神经元一个输入x=[2.3]。我们用点积来表示:

eb8951d56082c171512b933bcaddbaf1_4691fcdf97d849eb84598d71844d9e22.png

当输入是[2, 3]时,这个神经元的输出是0.999。给定输入,得到输出的过程被称为前馈。

1.2编码一个神经元

让我们来实现一个神经元!用Python的NumPy库来完成其中的数学计算:

import numpy as np
def sigmoid(x):
  # 我们的激活函数: f(x) = 1 / (1 + e^(-x))
  return 1 / (1 + np.exp(-x))
class Neuron:
  def __init__(self, weights, bias):
    self.weights = weights
    self.bias = bias
  def feedforward(self, inputs):
    # 加权输入,加入偏置,然后使用激活函数
    total = np.dot(self.weights, inputs) + self.bias
    return sigmoid(total)
weights = np.array([0, 1]) # w1 = 0, w2 = 1
bias = 4                   # b = 4
n = Neuron(weights, bias)
x = np.array([2, 3])       # x1 = 2, x2 = 3
print(n.feedforward(x))    # 0.9990889488055994

还记得这个数字吗?就是我们前面算出来的例子中的0.999。

1.3把神经元组装成网络

所谓的神经网络就是一堆神经元。这就是一个简单的神经网络:

6df7426e43b2256927b8332565c755be_f4e6ff64562a4b6e852eeedc9b03e65e.png

这个网络有两个输入,一个有两个神经元( h1和h2 )的隐藏层,以及一个有一个神经元(o1)的输出层。要注意,o1的输入就是h1和h2的输出,这样就组成了一个网络。

隐藏层就是输入层和输出层之间的层,隐藏层可以是多层的。

二、前馈

       我们继续用前面图中的网络,假设每个神经元的权重都是w=[0,1]截距项也相同b=0,激活函数也都是S型函数。分别用h1,h2表示相应的神经元的输出。


当输入x=[2,3时,会得到什么结果?这个神经网络对输入的输出是0.7216,很简单。


       一个神经网络的层数以及每一层中的神经元数量都是任意的。基本逻辑都一样:输入在神经网络中向前传输,最终得到输出。接下来,我们会继续使用前面的这个网络。


接下来我们实现这个神经网络的前馈机制,还是这个图:

34b2ccf8d4a6c107e6e86f0ca547cb07_b3bf40a45736435ebdad95d5fabdd37a.png

import numpy as np
class OurNeuralNetwork:
  def __init__(self):
    weights = np.array([0, 1])
    bias = 0
    # 这里是来自前一节的神经元类
    self.h1 = Neuron(weights, bias)
    self.h2 = Neuron(weights, bias)
    self.o1 = Neuron(weights, bias)
  def feedforward(self, x):
    out_h1 = self.h1.feedforward(x)
    out_h2 = self.h2.feedforward(x)
    # o1的输入是h1和h2的输出
    out_o1 = self.o1.feedforward(np.array([out_h1, out_h2]))
    return out_o1
network = OurNeuralNetwork()
x = np.array([2, 3])
print(network.feedforward(x)) # 0.7216325609518421

结果正确,看上去没问题。

三、训练神经网络

import numpy as np
def sigmoid(x):
  # Sigmoid activation function: f(x) = 1 / (1 + e^(-x))
  return 1 / (1 + np.exp(-x))
def deriv_sigmoid(x):
  # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x))
  fx = sigmoid(x)
  return fx * (1 - fx)
def mse_loss(y_true, y_pred):
  # y_true和y_pred是相同长度的numpy数组。
  return ((y_true - y_pred) ** 2).mean()
class OurNeuralNetwork:
  def __init__(self):
    # 权重,Weights
    self.w1 = np.random.normal()
    self.w2 = np.random.normal()
    self.w3 = np.random.normal()
    self.w4 = np.random.normal()
    self.w5 = np.random.normal()
    self.w6 = np.random.normal()
    # 截距项,Biases
    self.b1 = np.random.normal()
    self.b2 = np.random.normal()
    self.b3 = np.random.normal()
  def feedforward(self, x):
    # X是一个有2个元素的数字数组。
    h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1)
    h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2)
    o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)
    return o1
  def train(self, data, all_y_trues):
    '''
    - data is a (n x 2) numpy array, n = # of samples in the dataset.
    - all_y_trues is a numpy array with n elements.
      Elements in all_y_trues correspond to those in data.
    '''
    learn_rate = 0.1
    epochs = 1000 # 遍历整个数据集的次数
    for epoch in range(epochs):
      for x, y_true in zip(data, all_y_trues):
        # --- 做一个前馈(稍后我们将需要这些值)
        sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
        h1 = sigmoid(sum_h1)
        sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
        h2 = sigmoid(sum_h2)
        sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3
        o1 = sigmoid(sum_o1)
        y_pred = o1
        # --- 计算偏导数。
        # --- Naming: d_L_d_w1 represents "partial L / partial w1"
        d_L_d_ypred = -2 * (y_true - y_pred)
        # Neuron o1
        d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1)
        d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1)
        d_ypred_d_b3 = deriv_sigmoid(sum_o1)
        d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1)
        d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1)
        # Neuron h1
        d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1)
        d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1)
        d_h1_d_b1 = deriv_sigmoid(sum_h1)
        # Neuron h2
        d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2)
        d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2)
        d_h2_d_b2 = deriv_sigmoid(sum_h2)
        # --- 更新权重和偏差
        # Neuron h1
        self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1
        self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2
        self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1
        # Neuron h2
        self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3
        self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4
        self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2
        # Neuron o1
        self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5
        self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6
        self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3
      # --- 在每次epoch结束时计算总损失 
      if epoch % 10 == 0:
        y_preds = np.apply_along_axis(self.feedforward, 1, data)
        loss = mse_loss(all_y_trues, y_preds)
        print("Epoch %d loss: %.3f" % (epoch, loss))
# 定义数据集
data = np.array([
  [-2, -1],  # Alice
  [25, 6],   # Bob
  [17, 4],   # Charlie
  [-15, -6], # Diana
])
all_y_trues = np.array([
  1, # Alice
  0, # Bob
  0, # Charlie
  1, # Diana
])
# 训练我们的神经网络!
network = OurNeuralNetwork()
network.train(data, all_y_trues)

随着网络的学习,损失在稳步下降。

7320557dc53d51a8923e4602eccdd626_1411bd9ee14f4fa49bccf18d95b8cce3.png

现在我们可以用这个网络来预测性别了:

# 做一些预测
emily = np.array([-7, -3]) # 128 磅, 63 英寸
frank = np.array([20, 2])  # 155 磅, 68 英寸
print("Emily: %.3f" % network.feedforward(emily)) # 0.951 - F
print("Frank: %.3f" % network.feedforward(frank)) # 0.039 - M

四、总结

搞定了一个简单的神经网络,快速回顾一下:


  1. 介绍了神经网络的基本结构——神经元;

  2. 在神经元中使用S型激活函数;

  3. 神经网络就是连接在一起的神经元;

  4. 构建了一个数据集,输入(或特征)是体重和身高,输出(或标签)是性别;

  5. 学习了损失函数和均方差损失;

  6. 训练网络就是最小化其损失;

  7. 用反向传播方法计算偏导;

  8. 用随机梯度下降法训练网络;

接下来你还可以:

  1. 用机器学习库实现更大更好的神经网络,例如TensorFlow、Keras和PyTorch;
  2. 在浏览器中实现神经网络;
  3. 其他类型的激活函数;
  4. 其他类型的优化器;
  5. 学习卷积神经网络,这给计算机视觉领域带来了革命;
  6. 学习递归神经网络,常用语自然语言处理;
目录
相关文章
|
9天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
104 59
|
4天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
30 5
|
9天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
27 2
|
4天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
17 2
|
5天前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
16 1
|
6天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
21 2
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
25 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
5天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
25 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
10天前
|
机器学习/深度学习 数据采集 数据库
使用Python实现智能食品营养分析的深度学习模型
使用Python实现智能食品营养分析的深度学习模型
36 6

热门文章

最新文章