目录
前言
可能一提到神经网络,许多小伙伴就会感觉头大,不知道看眼前的你又是怎样的感受呢?【神经网络】这个词听起来让人觉得很高大上,但实际上神经网络算法要比人们想象的简单。今天我将手把手教你用Python来实现一个基础的神经网络模型,理解其背后的原理。
一、神经元
首先让我们看看神经网络的基本单位,神经元。神经元接受输入,对其做一些数据操作,然后产生输出。例如,这是一个2-输入神经元:
这里发生了三个事情。首先,每个输入都跟一个权重相乘(红色):
然后,加权后的输入求和,加上一个偏差b(绿色):
激活函数的用途是将一个无边界的输入,转变成一个可预测的形式。常用的激活函数就就是S型函数:
S型函数的值域是(0, 1)。简单来说,就是把(−∞, +∞)压缩到(0, 1) ,很大的负数约等于0,很大的正数约等于1。
1.1一个简单的例子
假设我们有一个神经元,激活函数就是S型函数,其参数如下:
w=[0,1] 就是以向量的形式表示w1=0,w2=1。现在,我们给这个神经元一个输入x=[2.3]。我们用点积来表示:
当输入是[2, 3]时,这个神经元的输出是0.999。给定输入,得到输出的过程被称为前馈。
1.2编码一个神经元
让我们来实现一个神经元!用Python的NumPy库来完成其中的数学计算:
import numpy as np def sigmoid(x): # 我们的激活函数: f(x) = 1 / (1 + e^(-x)) return 1 / (1 + np.exp(-x)) class Neuron: def __init__(self, weights, bias): self.weights = weights self.bias = bias def feedforward(self, inputs): # 加权输入,加入偏置,然后使用激活函数 total = np.dot(self.weights, inputs) + self.bias return sigmoid(total) weights = np.array([0, 1]) # w1 = 0, w2 = 1 bias = 4 # b = 4 n = Neuron(weights, bias) x = np.array([2, 3]) # x1 = 2, x2 = 3 print(n.feedforward(x)) # 0.9990889488055994
还记得这个数字吗?就是我们前面算出来的例子中的0.999。
1.3把神经元组装成网络
所谓的神经网络就是一堆神经元。这就是一个简单的神经网络:
这个网络有两个输入,一个有两个神经元( h1和h2 )的隐藏层,以及一个有一个神经元(o1)的输出层。要注意,o1的输入就是h1和h2的输出,这样就组成了一个网络。
隐藏层就是输入层和输出层之间的层,隐藏层可以是多层的。
二、前馈
我们继续用前面图中的网络,假设每个神经元的权重都是w=[0,1]截距项也相同b=0,激活函数也都是S型函数。分别用h1,h2表示相应的神经元的输出。
当输入x=[2,3时,会得到什么结果?这个神经网络对输入的输出是0.7216,很简单。
一个神经网络的层数以及每一层中的神经元数量都是任意的。基本逻辑都一样:输入在神经网络中向前传输,最终得到输出。接下来,我们会继续使用前面的这个网络。
接下来我们实现这个神经网络的前馈机制,还是这个图:
import numpy as np class OurNeuralNetwork: def __init__(self): weights = np.array([0, 1]) bias = 0 # 这里是来自前一节的神经元类 self.h1 = Neuron(weights, bias) self.h2 = Neuron(weights, bias) self.o1 = Neuron(weights, bias) def feedforward(self, x): out_h1 = self.h1.feedforward(x) out_h2 = self.h2.feedforward(x) # o1的输入是h1和h2的输出 out_o1 = self.o1.feedforward(np.array([out_h1, out_h2])) return out_o1 network = OurNeuralNetwork() x = np.array([2, 3]) print(network.feedforward(x)) # 0.7216325609518421
结果正确,看上去没问题。
三、训练神经网络
import numpy as np def sigmoid(x): # Sigmoid activation function: f(x) = 1 / (1 + e^(-x)) return 1 / (1 + np.exp(-x)) def deriv_sigmoid(x): # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x)) fx = sigmoid(x) return fx * (1 - fx) def mse_loss(y_true, y_pred): # y_true和y_pred是相同长度的numpy数组。 return ((y_true - y_pred) ** 2).mean() class OurNeuralNetwork: def __init__(self): # 权重,Weights self.w1 = np.random.normal() self.w2 = np.random.normal() self.w3 = np.random.normal() self.w4 = np.random.normal() self.w5 = np.random.normal() self.w6 = np.random.normal() # 截距项,Biases self.b1 = np.random.normal() self.b2 = np.random.normal() self.b3 = np.random.normal() def feedforward(self, x): # X是一个有2个元素的数字数组。 h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1) h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2) o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3) return o1 def train(self, data, all_y_trues): ''' - data is a (n x 2) numpy array, n = # of samples in the dataset. - all_y_trues is a numpy array with n elements. Elements in all_y_trues correspond to those in data. ''' learn_rate = 0.1 epochs = 1000 # 遍历整个数据集的次数 for epoch in range(epochs): for x, y_true in zip(data, all_y_trues): # --- 做一个前馈(稍后我们将需要这些值) sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1 h1 = sigmoid(sum_h1) sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2 h2 = sigmoid(sum_h2) sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3 o1 = sigmoid(sum_o1) y_pred = o1 # --- 计算偏导数。 # --- Naming: d_L_d_w1 represents "partial L / partial w1" d_L_d_ypred = -2 * (y_true - y_pred) # Neuron o1 d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1) d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1) d_ypred_d_b3 = deriv_sigmoid(sum_o1) d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1) d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1) # Neuron h1 d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1) d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1) d_h1_d_b1 = deriv_sigmoid(sum_h1) # Neuron h2 d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2) d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2) d_h2_d_b2 = deriv_sigmoid(sum_h2) # --- 更新权重和偏差 # Neuron h1 self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1 self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2 self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1 # Neuron h2 self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3 self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4 self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2 # Neuron o1 self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5 self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6 self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3 # --- 在每次epoch结束时计算总损失 if epoch % 10 == 0: y_preds = np.apply_along_axis(self.feedforward, 1, data) loss = mse_loss(all_y_trues, y_preds) print("Epoch %d loss: %.3f" % (epoch, loss)) # 定义数据集 data = np.array([ [-2, -1], # Alice [25, 6], # Bob [17, 4], # Charlie [-15, -6], # Diana ]) all_y_trues = np.array([ 1, # Alice 0, # Bob 0, # Charlie 1, # Diana ]) # 训练我们的神经网络! network = OurNeuralNetwork() network.train(data, all_y_trues)
随着网络的学习,损失在稳步下降。
现在我们可以用这个网络来预测性别了:
# 做一些预测 emily = np.array([-7, -3]) # 128 磅, 63 英寸 frank = np.array([20, 2]) # 155 磅, 68 英寸 print("Emily: %.3f" % network.feedforward(emily)) # 0.951 - F print("Frank: %.3f" % network.feedforward(frank)) # 0.039 - M
四、总结
搞定了一个简单的神经网络,快速回顾一下:
- 介绍了神经网络的基本结构——神经元;
- 在神经元中使用S型激活函数;
- 神经网络就是连接在一起的神经元;
- 构建了一个数据集,输入(或特征)是体重和身高,输出(或标签)是性别;
- 学习了损失函数和均方差损失;
- 训练网络就是最小化其损失;
- 用反向传播方法计算偏导;
- 用随机梯度下降法训练网络;
接下来你还可以:
- 用机器学习库实现更大更好的神经网络,例如TensorFlow、Keras和PyTorch;
- 在浏览器中实现神经网络;
- 其他类型的激活函数;
- 其他类型的优化器;
- 学习卷积神经网络,这给计算机视觉领域带来了革命;
- 学习递归神经网络,常用语自然语言处理;