kafka 面试题

简介: kafka 面试题

4、讲讲 kafka 维护消费状态跟踪的方法
大部分消息系统在 broker 端的维护消息被消费的记录:一个消息被分发到
consumer 后 broker 就马上进行标记或者等待 customer 的通知后进行标记。这
样也可以在消息在消费后立马就删除以减少空间占用。
但是这样会不会有什么问题呢?如果一条消息发送出去之后就立即被标记为消费
过的,一旦 consumer 处理消息时失败了(比如程序崩溃)消息就丢失了。为了
解决这个问题,很多消息系统提供了另外一个个功能:当消息被发送出去之后仅
仅被标记为已发送状态,当接到 consumer 已经消费成功的通知后才标记为已被
消费的状态。这虽然解决了消息丢失的问题,但产生了新问题,首先如果 consumer
处理消息成功了但是向 broker 发送响应时失败了,这条消息将被消费两次。第二
个问题时,broker 必须维护每条消息的状态,并且每次都要先锁住消息然后更改
状态然后释放锁。这样麻烦又来了,且不说要维护大量的状态数据,比如如果消
息发送出去但没有收到消费成功的通知,这条消息将一直处于被锁定的状态,
Kafka 采用了不同的策略。Topic 被分成了若干分区,每个分区在同一时间只被一
个 consumer 消费。这意味着每个分区被消费的消息在日志中的位置仅仅是一个
简单的整数:offset。这样就很容易标记每个分区消费状态就很容易了,仅仅需要
一个整数而已。这样消费状态的跟踪就很简单了。
这带来了另外一个好处:consumer 可以把 offset 调成一个较老的值,去重新消
费老的消息。这对传统的消息系统来说看起来有些不可思议,但确实是非常有用
的,谁规定了一条消息只能被消费一次呢?

相关文章
|
5天前
|
消息中间件 存储 缓存
大厂面试高频:Kafka 工作原理 ( 详细图解 )
本文详细解析了 Kafka 的核心架构和实现原理,消息中间件是亿级互联网架构的基石,大厂面试高频,非常重要,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:Kafka 工作原理 ( 详细图解 )
|
3月前
|
消息中间件 存储 负载均衡
Kafka面试题及答案
Kafka面试题及答案
|
3天前
|
消息中间件 大数据 Kafka
大厂面试高频:Kafka、RocketMQ、RabbitMQ 的优劣势比较
本文深入探讨了消息队列的核心概念、应用场景及Kafka、RocketMQ、RabbitMQ的优劣势比较,大厂面试高频,必知必会,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:Kafka、RocketMQ、RabbitMQ 的优劣势比较
|
30天前
|
消息中间件 存储 缓存
美团面试: Kafka为啥能实现 10Wtps 到100Wtps ?kafka 如何实现零复制 Zero-copy?
40岁老架构师尼恩分享了Kafka如何实现高性能的秘诀,包括零拷贝技术和顺序写。Kafka采用mmap和sendfile两种零拷贝技术,前者用于读写索引文件,后者用于向消费者发送消息,减少数据在用户空间和内核空间间的拷贝次数,提高数据传输效率。此外,Kafka通过顺序写日志文件,避免了磁盘寻道和旋转延迟,进一步提升了写入性能。尼恩还提供了系列技术文章和PDF资料,帮助读者深入理解这些技术,提升面试竞争力。
美团面试: Kafka为啥能实现 10Wtps 到100Wtps ?kafka 如何实现零复制 Zero-copy?
|
1月前
|
消息中间件 存储 Kafka
面试题:Kafka如何保证高可用?有图有真相
面试题:Kafka如何保证高可用?有图有真相
|
3月前
|
消息中间件 算法 Java
面试官:Kafka中的key有什么用?
面试官:Kafka中的key有什么用?
126 3
面试官:Kafka中的key有什么用?
|
4月前
|
消息中间件 Kafka
面试题Kafka问题之Kafka【线上】积压消费如何解决
面试题Kafka问题之Kafka【线上】积压消费如何解决
35 0
|
4月前
|
消息中间件 算法 NoSQL
面试题Kafka问题之Kafka保证系统的可用性如何解决
面试题Kafka问题之Kafka保证系统的可用性如何解决
41 0
|
4月前
|
消息中间件 Kafka 数据库
面试题Kafka问题之查看偏移量为23的消息如何解决
面试题Kafka问题之查看偏移量为23的消息如何解决
36 0
|
1月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。