数据在内存中的存储【上篇】

简介: 数据在内存中的存储【上篇】

⚙️1.数据类型的详细介绍

🥳基本的内置类型 :

💡char ---------- 字符数据类型 ----- 1 byte(8 bit)
💡short --------- 短整型 -------------- 2 byte(16 bit)

💡 int ------------- 整型 ---------------- 4 byte(32 bit)
💡long ---------- 长整型 -------------- 4/8 byte(32/64 bit)

💡long long ---- 更长的整型 ------- 8 byte(64 bit)
💡 float ---------- 单精度浮点型 ---- 4 byte(32 bit)
💡double ------- 双精度浮点型 ---- 8 byte(64 bit)


🔩1.1.类型的基本归类

🥳整型家族

🔔 char :

👉 unsigned char

👉 signed char

🔔 short :

👉 unsigned short [int]

👉 signed short [int]

🔔 short :

👉 unsigned short [int]

👉 signed short [int]

🔔 int :

👉 unsigned int

👉 signed int

🔔 long :

👉 unsigned long [int]

👉 signed long [int]

🔴字符存储和表示的时候本质上使用的是 ASCII 值,ASCII 值是整数,所以字符类型也归类到整型家族里

🔴signed :有符号型 (可表示正数也可表示负数); unsigned :无符号型 (只能表示正数)

🔴char 是不是 signed char 是取决于编译器的 (一般编译器下,char 就是 signed char)如果要写无符号型就必须使用 unsigned char


⚙️2.整型在内存中的存储

🥰 一个变量的创建是要在内存中开辟空间的,空间的大小是根据不同的类型而决定的

🔴 内存中存储的都是二进制数据


🔩2.1.原码、反码、补码

📍计算机中的整数有三种二进制表示方法:原码、反码、补码

📍三种表示方法均有符号位数值位两部分组成,符号位都是用0表示“”,用1表示“

📍正数的原码、反码、补码都相同,负数则需要计算

🙌原码把一个数按照正负直接翻译成二进制就是原码

比如500000000000000000000000000000101

比如-510000000000000000000000000000101

最高的一位表示符号位,0表示正数,1表示负数

🙌反码原码的符号位不变,其他位按位取反就是反码

-5 : 11111111111111111111111111111010

🙌补码反码+1

-5 : 11111111111111111111111111111011

1ec1264880dc47829666be8e09773bcd.png

👇我们来看一下数据在存储和运行使用的时候,存的到底是什么码的二进制👇

👇因为正整数的原码、反码、补码都相同,所以我们要用负数来观察👇

int main()
{
  int a = -10;
  //00000000000000000000000000001010 -- 原码
  //11111111111111111111111111110101 -- 反码
  //11111111111111111111111111110110 -- 补码
  return 0;
}


我们进入调试,看一下内存👇

26f07004339c4cdbb8821f5f32f8109d.png

4349e9abb9a141dabcdedb6ee8363d9f.png

为了方便展示,内存中显示的是十六进制,实际上存的是二进制,由上图通过调试可以看出:数据存放内存中其实存放的是补码

🙌那么为什么呢?

📍在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理

📍同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路


🔩2.2.大小端的介绍

🥳数据的存储有哪些方式呢?

4adb93f21a3c44d6b6b5649659bafb43.png🥰数据的存储可以有很多种方式,可以是没有规律的,但是由于存进去之后用的时候还要拿出来,没有规律的存储就很麻烦,所以最后只保留了前两种存储方式,分别为:大端字节序存储小端字节序存储

📀大端字节序存储:把一个数据的低位字节的数据,存放在高地址处,把高位字节的数据,存放在低地址处
📀大端字节序存储:把一个数据的低位字节的数据,存放在低地址处,把高位字节的数据,存放在高地址处

2ea94ae366344f92b2c2e8c6942f934f.png

通过调试可以看到,当前机器上数据的存储方式是以小端字节序存储

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。 但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。


例如:一个16bit 的short 型x,在内存中的地址为 0x0010,x的值为 0x1122,那么0x11 为高字节,0x22为低字节。对于大端模式,就将 0x11 放在低地址中,即0x0010中,ox22放在高地址中,即0x0011 中。小端模式,网好相反。我们常用的x86结构是小端模式,而 KETL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。


👇来看一道笔试题👇

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序

9f450fc1c7ee4595b9d3736fd7fae8ba.png

看代码👇

//如果大端返回0
//如果小端返回1
int check_sys()
{
  int a = 1;
  char* p = (char*)&a; //因为要拿第一个字节,所以要强制类型转换
  if (*p == 1)
    return 1;
  else
    return 0;
}
int main()
{
  if (check_sys() == 1)
    printf("小端\n");
  else
    printf("大端\n");
  return 0;
}

还可以简化一下👇

int check_sys()
{
  int a = 1;
  return *(char*)&a;
}
int main()
{
  if (check_sys() == 1)
    printf("小端\n");
  else
    printf("大端\n");
  return 0;
}
目录
相关文章
|
2月前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
86 11
|
3月前
|
监控 算法 应用服务中间件
“四两拨千斤” —— 1.2MB 数据如何吃掉 10GB 内存
一个特殊请求引发服务器内存用量暴涨进而导致进程 OOM 的惨案。
105 14
|
3月前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
187 1
|
3月前
|
存储
共用体在内存中如何存储数据
共用体(Union)在内存中为所有成员分配同一段内存空间,大小等于最大成员所需的空间。这意味着所有成员共享同一块内存,但同一时间只能存储其中一个成员的数据,无法同时保存多个成员的值。
|
3月前
|
监控 Java easyexcel
面试官:POI大量数据读取内存溢出?如何解决?
【10月更文挑战第14天】 在处理大量数据时,使用Apache POI库读取Excel文件可能会导致内存溢出的问题。这是因为POI在读取Excel文件时,会将整个文档加载到内存中,如果文件过大,就会消耗大量内存。以下是一些解决这一问题的策略:
486 1
|
3月前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
3月前
|
缓存 安全 Java
使用 Java 内存模型解决多线程中的数据竞争问题
【10月更文挑战第11天】在 Java 多线程编程中,数据竞争是一个常见问题。通过使用 `synchronized` 关键字、`volatile` 关键字、原子类、显式锁、避免共享可变数据、合理设计数据结构、遵循线程安全原则和使用线程池等方法,可以有效解决数据竞争问题,确保程序的正确性和稳定性。
68 2
|
2月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
502 1
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
2月前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80