带你读《2022技术人的百宝黑皮书》——基于机器学习的带宽估计在淘宝直播中的探索与实践(4) https://developer.aliyun.com/article/1243295?groupCode=taobaotech
Loki:解决长尾表现问题
与传统的基于规则的算法不同,基于学习的拥塞控制方法通常使用覆盖了各种网络状态的大量数据集来训练一个神经网络模型。这种数据驱动的模型在平均指标上表现优异,然而因为神经网络的黑盒决策模式导致的不健壮问题,成为了在生产系统中的大规模部署的一大障碍。虽然在平均水平上表现符合预期,单个 QoE 的灾难性表现也会使得用户抛弃一款应用。
为了探索实时视频传输场景的长尾表现,我们对时下前沿的基于规则的和基于学习的算法进行了对比实验。实验结果表明,一方面,基于学习的算法在传输层指标确实展现了优势,在保持低延迟的情况下有更高的吞吐率,而这样的优势却并不能有效的转化为 QoE 指标的提升,部分应用层的帧延迟和抖动甚至可能恶化。更深入的分析表明,原因存在于传输层指标的长尾表现问题。另一方面,基于学习的方法偶然会产生不准确的带宽预测。一些严重的过载预测就能造成灾难性的表现,如跳帧甚至是卡顿。我们发现问题的根因在于,这些带宽估计的算法,尤其是广泛使用的强化学习算法,是通过“尝试与犯错”的模式进行学习。它们追求最大化长期的累积反馈,因此能容忍偶然过载或缺载的预测结果,这就造成了长尾结果表现不佳。
受到上面两方面观察的启发,我们希望解决一个关键问题:是否能设计一种平均表现和长尾表现均令人满意的实时视频传输算法?为此,我们设计并实现了 Loki,一种混合模型。它同时利用基于规则的方法的确定性,和基于学习的方法的预测能力。当网络状态不稳定,Loki 使用保守的和基于规则的方法一样的码率决策方式,来避免灾难性的 QoE 降级。其他情况,Loki 则会通过类似学习的探测来充分利用网络带宽。
带你读《2022技术人的百宝黑皮书》——基于机器学习的带宽估计在淘宝直播中的探索与实践(6) https://developer.aliyun.com/article/1243293?groupCode=taobaotech