DAPP合约代币系统开发案例详细/方案设计/源码分析/规则详情

简介: 区块链的发展,透明公开的机制使得大家对于互联网之下的更多应用能更直接的建立信任;区块链技术其中的一大改变就是改变了我们的信任机制。而智能合约在信任的基础之下,还能自动的完成合约条款。

区块链的发展,透明公开的机制使得大家对于互联网之下的更多应用能更直接的建立信任;区块链技术其中的一大改变就是改变了我们的信任机制。而智能合约在信任的基础之下,还能自动的完成合约条款。

在智能合约中,先通过定义预先设定的输入条件和对应的输出动作。编码完成后,技术人员需要将智能合约部署到区块链网络上,在网络中的节点能够对合约进行验证。如果合约中的条件触发,就会执行相应的动作,而不会受到外界的干扰。在区块链上,智能合约能够访问区块中的数据和信息,并且能够实现价值转移,这也是智能合约与区块链不可分割的原因所在。

智能合约还拥有不可逆和修改性,一旦它被部署到区块链上,就将会终极授权,无法改变。

pragma solidity =0.5.16;

import './interfaces/IUniswapV2Pair.sol';
import './UniswapV2ERC20.sol';
import './libraries/Math.sol';
import './libraries/UQ112x112.sol';
import './interfaces/IERC20.sol';
import './interfaces/IUniswapV2Factory.sol';
import './interfaces/IUniswapV2Callee.sol';

contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
using SafeMath for uint;
using UQ112x112 for uint224;

uint public constant MINIMUM_LIQUIDITY = 10**3;
bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));

address public factory;
address public token0;
address public token1;

uint112 private reserve0;           // uses single storage slot, accessible via getReserves
uint112 private reserve1;           // uses single storage slot, accessible via getReserves
uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves

uint public price0CumulativeLast;
uint public price1CumulativeLast;
uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event

uint private unlocked = 1;
modifier lock() {
    require(unlocked == 1, 'UniswapV2: LOCKED');
    unlocked = 0;
    _;
    unlocked = 1;
}

function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
    _reserve0 = reserve0;
    _reserve1 = reserve1;
    _blockTimestampLast = blockTimestampLast;
}

function _safeTransfer(address token, address to, uint value) private {
    (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
    require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
}

event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
    address indexed sender,
    uint amount0In,
    uint amount1In,
    uint amount0Out,
    uint amount1Out,
    address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);

constructor() public {
    factory = msg.sender;
}

// called once by the factory at time of deployment
function initialize(address _token0, address _token1) external {
    require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
    token0 = _token0;
    token1 = _token1;
}

// update reserves and, on the first call per block, price accumulators
function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
    require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
    uint32 blockTimestamp = uint32(block.timestamp % 2**32);
    uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
    if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
        // * never overflows, and + overflow is desired
        price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
        price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
    }
    reserve0 = uint112(balance0);
    reserve1 = uint112(balance1);
    blockTimestampLast = blockTimestamp;
    emit Sync(reserve0, reserve1);
}

// if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
    address feeTo = IUniswapV2Factory(factory).feeTo();
    feeOn = feeTo != address(0);
    uint _kLast = kLast; // gas savings
    if (feeOn) {
        if (_kLast != 0) {
            uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
            uint rootKLast = Math.sqrt(_kLast);
            if (rootK > rootKLast) {
                uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                uint denominator = rootK.mul(5).add(rootKLast);
                uint liquidity = numerator / denominator;
                if (liquidity > 0) _mint(feeTo, liquidity);
            }
        }
    } else if (_kLast != 0) {
        kLast = 0;
    }
}

// this low-level function should be called from a contract which performs important safety checks
function mint(address to) external lock returns (uint liquidity) {
    (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
    uint balance0 = IERC20(token0).balanceOf(address(this));
    uint balance1 = IERC20(token1).balanceOf(address(this));
    uint amount0 = balance0.sub(_reserve0);
    uint amount1 = balance1.sub(_reserve1);

    bool feeOn = _mintFee(_reserve0, _reserve1);
    uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
    if (_totalSupply == 0) {
        liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
       _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
    } else {
        liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
    }
    require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
    _mint(to, liquidity);

    _update(balance0, balance1, _reserve0, _reserve1);
    if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
    emit Mint(msg.sender, amount0, amount1);
}

// this low-level function should be called from a contract which performs important safety checks
function burn(address to) external lock returns (uint amount0, uint amount1) {
    (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
    address _token0 = token0;                                // gas savings
    address _token1 = token1;                                // gas savings
    uint balance0 = IERC20(_token0).balanceOf(address(this));
    uint balance1 = IERC20(_token1).balanceOf(address(this));
    uint liquidity = balanceOf[address(this)];

    bool feeOn = _mintFee(_reserve0, _reserve1);
    uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
    amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
    amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
    require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
    _burn(address(this), liquidity);
    _safeTransfer(_token0, to, amount0);
    _safeTransfer(_token1, to, amount1);
    balance0 = IERC20(_token0).balanceOf(address(this));
    balance1 = IERC20(_token1).balanceOf(address(this));

    _update(balance0, balance1, _reserve0, _reserve1);
    if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
    emit Burn(msg.sender, amount0, amount1, to);
}

// this low-level function should be called from a contract which performs important safety checks
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
    require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
    (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
    require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');

    uint balance0;
    uint balance1;
    { // scope for _token{0,1}, avoids stack too deep errors
    address _token0 = token0;
    address _token1 = token1;
    require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
    if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
    if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
    if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
    balance0 = IERC20(_token0).balanceOf(address(this));
    balance1 = IERC20(_token1).balanceOf(address(this));
    }
    uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
    uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
    require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
    { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
    uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
    uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
    require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
    }

    _update(balance0, balance1, _reserve0, _reserve1);
    emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
}

// force balances to match reserves
function skim(address to) external lock {
    address _token0 = token0; // gas savings
    address _token1 = token1; // gas savings
    _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
    _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
}

// force reserves to match balances
function sync() external lock {
    _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
}

}

相关文章
|
5月前
|
区块链
关于代币合约项目系统开发DAPP模式方案【源码示例】
以下是一个简单的以太坊代币合约代码示例,它定义了一个名为 `Token` 的代币合约。在实际使用中,请确保您已获得适当的许可并遵循相关法规。
|
7月前
|
安全 API 区块链
数字货币合约交易系统开发教程指南丨案例项目丨功能策略丨需求分析丨源码详细
Developing a digital currency contract trading system is a complex project, and the following are possible project requirements details:
|
存储 监控 安全
合约交易所开发详情丨合约交易所系统开发项目/成熟案例/方案逻辑/规则玩法/稳定版/源码部署
合约交易所系统开发是一个复杂的项目,它涉及多个方面,包括系统设计、规则制定、开发实现、部署和稳定运行等
|
存储 算法 区块链
DAPP去中心化合约系统开发详情模式|案例分析
去中心化技术也会产生一些问题。区块链保证了账户绝对的安全性和匿名性
|
存储 大数据 Linux
秒合约交易系统开发部署源码|秒合约详情方案
区块链技术,通过网络中所有节点共同参与计算,互相验证其信息的真伪以达成全网共识
|
机器人
量化交易/秒合约/交易所系统开发案例详解/功能说明/规则策略/源码模式
量化交易/秒合约/交易所系统开发案例详解/功能说明/规则策略/源码模式
|
算法 JavaScript 前端开发
秒合约交易所系统开发技术|现成案例|详情规则
区块链技术的最初迭代在某种程度上可与网站第一次进化相媲美。
|
区块链
数字货币永续合约系统开发|测试版|逻辑规则|案例详情
永续合约采用了期货合约的特点,尤其是无需交割实际商品。同时,模仿了现货市场的行为,以缩小期货价格与标记价格之间的差距。与传统的期货合约相比,这是一个很大的进步。
|
区块链 UED
DAPP去中心化交易所系统开发|详情方案|规则逻辑
智能合约是一种基于区块链技术的自动化合约,可以自动执行合约条款
合约跟单丨秒合约丨合约交易所系统开发步骤详情/功能设计/需求分析/案例开发/成熟案例/源码平台
Contract Copy Trading is an investment strategy that allows investors to achieve similar trading operations by copying the trading orders of other traders (also known as signal providers).