原始SPP及在YOLO中的SPP/SPPF对比详解

简介: 原始SPP及在YOLO中的SPP/SPPF对比详解

b7a98eb5a3354ae39870e6af321244e4.png在卷积神经网络中我们经常看到固定输入的设计,但是有的时候难以控制,何凯明大神的论文SPPNet中的SPP结构解决了该问题。

后续在YOLO系列中也出现了SPP结构及改进的结构,但是作用与最初的SPP结构却是不同的。

✨1 SPPNet中的SPP

原始SPP结构如下图所示:

67f7a3cf8aab4ee9a5c4ae4efcdf182d.png

下面默认通道数不变

首先输入Feature map(w,h,c)需要经过三个池化层:

k=(w, h, c)的池化层相当于将对整个图像取一次最大化操作,输出为(1, 1, c)的特征图。

k=(w/2, h/2, c)的池化层相当于将整个图像平均划分为4分,每一份取一次最大化操作,输出为(2, 2, c)的特征图。

k=(w/4, h/4, c)的池化层相当于将整个图像平均划分为16分,每一份取一次最大化操作,输出为(4, 4, c)的特征图。

然后将三个池化操作分别进行维度变换,再进行拼接操作。最终产生维度为(21, c)的向量。

通过上述两个步骤,可以看到我们的输入(w, h, c)不管如何变化,最终的输出都是(21, c)。

这里更多的是提供了一个思想,在不同网络中采用了不同的尝试,比如利用卷积层代替池化层等等…

✨2 YOLO中的SPP/SPPF

与上面何凯明大神提出的不同,这里的SPP虽然也叫SPP,但是作用更多的是实现局部特征和全局特征的featherMap级别的融合

🥓2.1 SPP

下面忽略了通道数的变化

eca2f2fd470048b4912be6dbf293e7f0.png

其中k(kernel_size)为卷积核尺寸。s(stride)为步长,p(padding)为在所有边界增加值。

可以看到与上面介绍的何凯明大神提出的SPP是不同的,输入Feature map(w, h, c)经过三次卷积操作像素并没有发生改变,作用更多的是实现局部特征和全局特征的featherMap级别的融合。

YOLO中的代码

class SPP(nn.Module):
    def __init__(self, c1, c2, k=(5, 9, 13)):  # 5,9,13分别是三个卷积操作的卷积核大小
        super().__init__()
        c_ = c1 // 2
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning忽略警告
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

💫2.2 SPPF

SPPF由yolo系列中的SPP结构改进而来,目的没有变化,只是从SPP改进为SPPF后,模型的计算量变小了很多,模型速度提升

YOLOV5中的SPPF结构:

忽略了通道数的变化

f1cc368b06df4856a2ecb998905a3405.png

其中Conv和Maxpool中第一个数(kernel_size)为卷积核尺寸。第二个数(stride)为步长,第三个数(padding)为在所有边界增加值。

YOLO V5代码:

class SPPF(nn.Module):
    """
        This code referenced to https://github.com/ultralytics/yolov5
    """
    def __init__(self, in_dim, out_dim, expand_ratio=0.5, pooling_size=5, act_type='lrelu', norm_type='BN'):
        super().__init__()
        inter_dim = int(in_dim * expand_ratio)
        self.out_dim = out_dim
        self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
        self.cv2 = Conv(inter_dim * 4, out_dim, k=1, act_type=act_type, norm_type=norm_type)
        self.m = nn.MaxPool2d(kernel_size=pooling_size, stride=1, padding=pooling_size // 2)
    def forward(self, x):
        x = self.cv1(x)
        y1 = self.m(x)
        y2 = self.m(y1)
        return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

从代码中可以看到其中进行的三次池化操作用到的均是统一个池化核。

相关文章
|
机器学习/深度学习 计算机视觉 知识图谱
YoloV8最新改进手册——高阶篇
本专栏是讲解如何改进Yolov8的专栏。改进方法采用了最新的论文提到的方法。改进的方法包括:增加注意力机制、更换卷积、更换block、更换backbone、更换head、更换优化器等;每篇文章提供了一种到N种改进方法。 评测用的数据集是我自己标注的数据集,里面包含32种飞机。每种改进方法我都做了测评,并与官方的模型做对比。 代码和PDF版本的文章,我在验证无误后会上传到百度网盘中,方便大家下载使用。 这个专栏,求质不求量,争取尽心尽力打造精品专栏!!! 专栏链接: ''' https://blog.csdn.net/m0_47867638/category_12295903
2352 0
|
10月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
1929 8
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
|
9月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
388 13
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
|
9月前
|
计算机视觉
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
1885 10
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
|
9月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
YOLOv11改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
1077 1
YOLOv11改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
19432 0
|
机器学习/深度学习 编解码 测试技术
【YOLOv8改进-SPPF】 Focal Modulation :使用焦点调制模块替代SPPF
YOLOv8专栏介绍了FocalNets,一种取代自注意力的新型模块,提升模型在图像分类、检测和分割任务中的性能。Focal Modulation包括局部聚焦、全局调制和多尺度处理,通过融合CNN和自注意力优点。代码展示了FocalModulation模块的实现。论文和代码已开源。在多个基准测试中,FocalNets超越了Swin等先进模型。
|
机器学习/深度学习 自然语言处理 计算机视觉
YOLOv8改进 | 2023 | 给YOLOv8换个RT-DETR的检测头(重塑目标检测前沿技术)
YOLOv8改进 | 2023 | 给YOLOv8换个RT-DETR的检测头(重塑目标检测前沿技术)
884 0
|
计算机视觉 异构计算
【YOLOv8改进-SPPF】 AIFI : 基于注意力的尺度内特征交互,保持高准确度的同时减少计算成本
YOLOv8专栏介绍了该系列目标检测框架的最新改进与实战应用。文章提出RT-DETR,首个实时端到端检测器,解决了速度与精度问题。通过高效混合编码器和不确定性最小化查询选择,RT-DETR在COCO数据集上实现高AP并保持高帧率,优于其他YOLO版本。论文和代码已开源。核心代码展示了AIFI Transformer层,用于位置嵌入。更多详情见[YOLOv8专栏](https://blog.csdn.net/shangyanaf/category_12303415.html)。