基于mfcc和DTW语音信息特征提取算法matlab仿真

简介: 基于mfcc和DTW语音信息特征提取算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
a924186575aa4d9178fc0d81863b6dc4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
a0434e617407e29be1cda13f08c7d86b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
d43b480c2bf9176b7e27bfbd1cb8b899_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
在语音识别(Speech Recognition)和话者识别(Speaker Recognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)。根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度。从200Hz到5000Hz的语音信号对语音的清晰度影响对大。两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,这种现象称为掩蔽效应。由于频率较低的声音在内耳蜗基底膜上行波传递的距离大于频率较高的声音,故一般来说,低音容易掩蔽高音,而高音掩蔽低音较困难。在低频处的声音掩蔽的临界带宽较高频要小。所以,人们从低频到高频这一段频带内按临界带宽的大小由密到疏安排一组带通滤波器,对输入信号进行滤波。将每个带通滤波器输出的信号能量作为信号的基本特征,对此特征经过进一步处理后就可以作为语音的输入特征。由于这种特征不依赖于信号的性质,对输入信号不做任何的假设和限制,又利用了听觉模型的研究成果。因此,这种参数比基于声道模型的LPCC相比具有更好的鲁邦性,更符合人耳的听觉特性,而且当信噪比降低时仍然具有较好的识别性能。
梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)是在Mel标度频率域提取出来的倒谱参数,Mel标度描述了人耳频率的非线性特性,它与频率的关系可用下式近似表示:

77122ee625d94d15721f4a5c8153148d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    美尔尺度是建立从人类的听觉感知的频率——Pitch到声音实际频率直接的映射。人耳对于低频声音的分辨率要高于高频的声音。通过把频率转换成美尔尺度,我们的特征能够更好的匹配人类的听觉感知效果。从频率到美尔频率的转换公式如下: 

M(f)=1125ln(1+f/700)M(f)=1125ln(1+f/700)M(f)=1125ln(1+f/700)M(f)=1125ln(1+f/700)

   而从美尔频率到频率的转换公式为:

M−1(m)=700(em/1125−1)M−1(m)=700(em/1125−1)M−1(m)=700(em/1125−1)M−1(m)=700(em/1125−1)
流程图:
054e8ba8114eefcdedfc4d52602bbb91_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

预处理包括预加重、分帧、加窗。
(1)预加重
预加重的目的是提升高频部分,使信号的频谱变得平坦,保持在低频到高频的整个频带中,能用同样的信噪比求频谱。同时,也是为了消除发生过程中声带和嘴唇的效应,来补偿语音信号受到发音系统所抑制的高频部分,也为了突出高频的共振峰。预加重处理其实是将语音信号通过一个高通滤波器。

(2)分帧
由于语音信号的非平稳特性 和 短时平稳特性,将语音信号分分帧。一帧有N个采样点,如N的值为256或512,涵盖的时间约为20~30ms左右。为了避免相邻两帧的变化过大,平缓过度,因此会让两相邻帧之间有一段重叠区域,此重叠区域包含了M个取样点,通常M的值约为N的1/2或1/3。通常语音识别所采用语音信号的采样频率为8KHz或16KHz,以8KHz来说,若帧长度为256个采样点,则对应的时间长度是256/8000×1000=32ms。
(3)加窗
为了缓解频谱泄漏。将每一帧乘以一个窗函数,如汉明窗,海宁窗。假设分帧后的信号为S(n), n=0,1…,N-1, N为帧的大小。

  语音信号的倒谱分析就是求信号倒谱特征参数的过程,可以通过同态处理来处理。同态处理实现了卷积关系变化为求和关系的分离操作。 

   由于即使同一个人不同时间发出同一个声音,也不可能具有相同的长度,因此就需要用到动态时间归正(DTW)算法。把时间归正和距离测度计算结合起来的一种非线性归正技术。DTW 本质上是一个简单的动态规划算法,是用来计算两个维数不同的向量之间的相似度的问题,即计算向量 M1 和 M2 的最短距离。是一种非常常用的语音匹配算法。

    对两个不同维数的语音向量 m1 和 m2进行匹配(m1 和 m2 的每一维也是一个向量,是语音每一帧的特征值,这里利用的是 MFCC 特征)。设两个向量的长度为 M1 和 M2,则距离可以表示为:

那么,就可以这样进行匹配:

c045c928115130c047df2efb2155b368_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

每一条从(1,1)到(M1,M2)路径都有一个累计距离称为路径的代价;

每一条路径都代表一种对齐情况;

代价最小的路径就是所求的对准路径。

  1. 定义一个代价函数 , 表示从起始点(1,1)出发,到达(i,j)点最小代价路径的累计距离。有:

65f925d82f7359a81117063af78b634e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序
```function [mj,melNo]= Melfilterbank(STFf,frq,frameNo,points)

melNo=25; %number of mel filters
syms mel(freq)
mel(freq)=1127*log(1+freq/700); % mel scale
center=zeros(1,(melNo+2));
freq1=7000;
freq0=50;
center(1)=mel(freq0);

hbandwidth=(mel(freq1)-mel(freq0))/(melNo+1);% half of bandwidth of each mel filter in mel scale
for i=2:melNo+2
center(i)=center(i-1)+hbandwidth; % center of each filter in mel scale
end

for i=1:melNo+2
center(i)=(exp(center(i)/1127)-1)700; %moving centers to normal frequency scale
end
mj=zeros(frameNo,melNo);
for i=1:melNo
for j=1:frameNo
for k=1:(points/2)+1
if frq(k)>center(i) && frq(k)<center(i+1)
melresult=STFf(j,k)
((1/(center(i+1)-center(i)))(frq(k)-center(i)));
elseif frq(k)>center(i+1) && frq(k)<center(i+2)
melresult=STFf(j,k)
((-1/(center(i+2)-center(i+1)))*(frq(k)-center(i+2)));
else
melresult=0;
end
mj(j,i)=melresult^2+mj(j,i);
end
end
end
mj=log10(mj);
```

相关文章
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
13天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
13天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
13天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
32 3
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
13天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
24天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
29天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。

热门文章

最新文章