卢森堡一个地下数据中心通过了EN50600合规性审核

简介:

日前,European Data Hub公司在其总部卢森堡的一个地下数据中心已通过了EN50600可靠性标准的合规性审核。据称,这是为了区别于其它数据中心,因为大量的欧洲各国的数据中心都已获得TierIV级的认证。

这个地下数据中心是卢森堡最大的数据中心设施之一,已成为欧洲第一个(也许是全球第一个)符合欧洲EN50600数据中心基础设施标准的数据中心,并获得了最高的可用性等级评价。该数据中心现由商业房地产公司世邦魏理仕公司进行管理。

根据调查机构Uptime Institute的调查,该公司的数据中心已采用了Tier IV级认证的设计,但其实际建造中并未采用TierIV级建造的认证,而是采用欧洲标准机构CENELEC制定的EN50600标准。EN50600标准并没有一个正式的证书,但EDH邀请了数据中心审计事务所Capitoline进行审核。

高度可靠的数据中心

European Data Hub数据中心位于22米深的地下,其数据中心占地面积为5500平方米。其IT机房分别托管的主机客户包括欧洲法院司法部门和游戏主机供应商GameCore公司。

EN50600标准考虑了架构,综合布线,安防,DCIM,电源,冷却和消防等方面的部署。EDH数据中心现已通过EN50600标准的建筑施工第4类合规性审核,其配电、电信布线基础设施和4E级环境控制都达到EN50600标准的各部分的最高水平。

目前,EN50600标准最终将补充公布管理MD能源管理标准和关键绩效指标(KPI)。该数据中心部署多台静态和动态飞轮式UPS,以及多台现场发电机。

卢森堡拥有大量已获得TierIV认证的数据中心设施,其中包括由Lux Connect公司和EBRC公司建设并运营的数据中心。

本文转自d1net(转载)

相关文章
|
存储 传感器 监控
探索现代数据中心的冷却技术革新
【4月更文挑战第23天】 在信息技术迅猛发展的今天,数据中心作为计算和存储的核心枢纽,其稳定性和效率至关重要。然而,随着处理能力的增强,设备发热量急剧上升,有效的冷却方案成为确保数据中心持续运行的关键因素。本文将深入分析当前数据中心面临的热管理挑战,并探讨几种前沿的冷却技术,包括液冷系统、热管技术和环境自适应控制策略。通过比较不同技术的优缺点,我们旨在为数据中心管理者提供实用的冷却解决方案参考。
|
7月前
|
存储 双11 数据中心
数据中心网络关键技术,技术发明一等奖!
近日,阿里云联合清华大学与中国移动申报的“性能可预期的大规模数据中心网络关键技术与应用”项目荣获中国电子学会技术发明一等奖。该项目通过端网融合架构,实现数据中心网络性能的可预期性,在带宽保障、时延控制和故障恢复速度上取得重大突破,显著提升服务质量。成果已应用于阿里云多项产品及重大社会活动中,如巴黎奥运会直播、“双十一”购物节等,展现出国际领先水平。
|
运维 负载均衡 监控
|
机器学习/深度学习 存储 监控
利用机器学习技术优化数据中心能效
【7月更文挑战第36天】在数据中心管理和运营中,能源效率已成为关键性能指标之一。随着能源成本的不断上升以及环境保护意识的增强,开发智能化、自动化的解决方案以降低能耗和提高能源利用率变得尤为重要。本文探讨了如何应用机器学习技术对数据中心的能源消耗进行建模、预测和优化,提出了一个基于机器学习的框架来动态调整资源分配和工作负载管理,以达到节能的目的。通过实验验证,该框架能够有效减少数据中心的能耗,同时保持服务质量。
|
存储 大数据 数据处理
探索现代数据中心的冷却技术
【5月更文挑战第25天】 在信息技术迅猛发展的今天,数据中心作为其核心基础设施之一,承载了巨大的数据处理需求。随着服务器密度的增加和计算能力的提升,数据中心的能耗问题尤其是冷却系统的能效问题日益凸显。本文将深入探讨现代数据中心所采用的高效冷却技术,包括液冷解决方案、热管技术和环境自适应控制等,旨在为数据中心的绿色节能提供参考和启示。
|
人工智能 监控 物联网
探索现代数据中心的冷却技术
【5月更文挑战第27天】 在信息技术迅猛发展的今天,数据中心作为信息处理的核心设施,其稳定性和效率至关重要。而随着计算能力的提升,数据中心面临的一个重大挑战便是散热问题。本文将深入探讨现代数据中心冷却技术的进展,包括传统的空气冷却系统、水冷系统,以及新兴的相变材料和热管技术。通过对不同冷却方式的效率、成本及实施难度的分析,旨在为读者提供一份关于数据中心散热优化的参考指南。
221 4
|
机器学习/深度学习 资源调度 监控
利用机器学习技术优化数据中心能效
【5月更文挑战第30天】在数据中心管理和运营中,能源效率的优化是降低运营成本和减少环境影响的关键。本文旨在探讨如何应用机器学习技术来提升数据中心的能源效率。通过对现有数据中心运行数据的深入分析,开发预测性维护模型,以及实施智能资源调度策略,我们可以显著提高数据中心的能效。本研究提出了一种集成机器学习算法的框架,该框架能够实时监控并调整数据中心的能源消耗,确保以最佳性能运行。
|
存储 传感器 人工智能
探索现代数据中心的冷却技术革新
【5月更文挑战第18天】 在数字化时代,数据中心作为信息处理与存储的核心设施,其稳定性和效能至关重要。随着计算需求的激增,数据中心的冷却系统面临着前所未有的挑战。传统的空调冷却方法不仅耗能巨大,而且效率低下。本文将深入探讨现代数据中心冷却技术的最新进展,包括液冷技术、热管应用、环境辅助设计以及智能化管理等方面,旨在提供一种高效、可持续且经济的解决方案,以应对日益增长的冷却需求。
|
存储 大数据 数据中心
提升数据中心能效的先进冷却技术
【5月更文挑战第27天】 在信息技术不断进步的今天,数据中心作为计算和存储的核心枢纽,其能源效率已成为评价其可持续性的关键指标。本文将探讨当前数据中心面临的热管理挑战,并展示一系列创新的冷却技术解决方案,旨在提高数据中心的能效,同时确保系统的稳定性和可靠性。通过对比传统冷却方法和新兴技术,我们将分析各种方案的优势、局限性以及实施难度,为数据中心运营者提供科学的决策参考。
|
人工智能 运维 监控
未来数据中心的自动化运维技术探索
随着信息技术的快速发展,未来数据中心的运维需求将变得更加复杂而多样化。本文将探讨自动化运维技术在未来数据中心中的应用,分析其优势和挑战,并探讨如何实现高效的自动化运维管理。
366 21