J2EE知识点总结_Java8新特性

简介: J2EE知识点总结_Java8新特性

Lambda表达式

Lambda 是一个匿名函数,我们可以把 Lambda 表达式理解为是一段可以传递的代码(将代码像数据一样进行传递)。使用它可以写出更简洁、更灵活的代码。作为一种更紧凑的代码风格,使Java的语言表达能力得到了提升。

语法:

5133dd27af1c43b19115f53f59a5c110.png

8bb3bae6d06b48d9a42e74f07686cabb.png

package com.jerry.java;
import org.junit.Test;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.function.Consumer;
/**
 * @author jerry_jy
 * @create 2022-10-14 17:09
 */
public class LambdaTest1 {
    /*
     * Lambda表达式的使用
     *
     * 1.举例: (o1,o2) -> Integer.compare(o1,o2);
     * 2.格式:
     *      -> :lambda操作符 或 箭头操作符
     *      ->左边:lambda形参列表 (其实就是接口中的抽象方法的形参列表)
     *      ->右边:lambda体 (其实就是重写的抽象方法的方法体)
     *
     * 3. Lambda表达式的使用:(分为6种情况介绍)
     *
     *    总结:
     *    ->左边:lambda形参列表的参数类型可以省略(类型推断);如果lambda形参列表只有一个参数,其一对()也可以省略
     *    ->右边:lambda体应该使用一对{}包裹;如果lambda体只有一条执行语句(可能是return语句),省略这一对{}和return关键字
     *
     * 4.Lambda表达式的本质:作为函数式接口的实例
     *
     * 5. 如果一个接口中,只声明了一个抽象方法,则此接口就称为函数式接口。我们可以在一个接口上使用 @FunctionalInterface 注解,
     *   这样做可以检查它是否是一个函数式接口。
     *
     * 6. 所以以前用匿名实现类表示的现在都可以用Lambda表达式来写。
     */
    //语法格式一:无参,无返回值
    @Test
    public void test1(){
        Runnable r1 = new Runnable() {
            @Override
            public void run() {
                System.out.println("hello r1");
            }
        };
        r1.run();
        System.out.println("***********************");
        Runnable r2 = ()->{
            System.out.println("hello r2");
        };
        r2.run();
    }
    //语法格式二:Lambda 需要一个参数,但是没有返回值。
    @Test
    public void test2(){
        Consumer<String> con = new Consumer<String>() {
            @Override
            public void accept(String s) {
                System.out.println(s);
            }
        };
        con.accept("谎言和誓言的区别是什么?");
        System.out.println("*******************");
        Consumer<String> con1 = (String s)->{
            System.out.println(s);
        };
        con1.accept("一个是听得人当真了,一个是说的人当真了");
    }
    //语法格式三:数据类型可以省略,因为可由编译器推断得出,称为“类型推断”
    @Test
    public void test3(){
        Consumer<String> con1 = (String s) -> {
            System.out.println(s);
        };
        con1.accept("一个是听得人当真了,一个是说的人当真了");
        System.out.println("*******************");
        Consumer<String> con2 = (s)->{
            System.out.println(s);
        };
        con2.accept("一个是听得人当真了,一个是说的人当真了");
    }
    @Test
    public void test4(){
        ArrayList<String> list = new ArrayList<>();//类型推断
        int[] arr = {1,2,3};//类型推断
    }
    //语法格式四:Lambda 若只需要一个参数时,参数的小括号可以省略
    @Test
    public void test5(){
        Consumer<String> con1 = (s) -> {
            System.out.println(s);
        };
        con1.accept("一个是听得人当真了,一个是说的人当真了");
        System.out.println("*******************");
        Consumer<String> con2 = s -> {
            System.out.println(s);
        };
        con2.accept("一个是听得人当真了,一个是说的人当真了");
    }
    //语法格式五:Lambda 需要两个或以上的参数,多条执行语句,并且可以有返回值
    @Test
    public void test6(){
        Comparator<Integer> com1 = new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                System.out.println(o1);
                System.out.println(o2);
                return o1.compareTo(o2);
            }
        };
        System.out.println(com1.compare(12,21));
        System.out.println("*****************************");
        Comparator<Integer> com2 = (o1,o2) -> {
            System.out.println(o1);
            System.out.println(o2);
            return o1.compareTo(o2);
        };
        System.out.println(com2.compare(12,6));
    }
    //语法格式六:当 Lambda 体只有一条语句时,return 与大括号若有,都可以省略
    @Test
    public void test7(){
        Comparator<Integer> com1 = (o1, o2) -> {
            return o1.compareTo(o2);
        };
        System.out.println(com1.compare(12,6));
        System.out.println("*****************************");
        Comparator<Integer> com2 = (o1,o2) -> o1.compareTo(o2);
        System.out.println(com2.compare(12,21));
    }
    @Test
    public void test8(){
        Consumer<String> con1 = s -> {
            System.out.println(s);
        };
        con1.accept("一个是听得人当真了,一个是说的人当真了");
        System.out.println("*****************************");
        Consumer<String> con2 = s -> System.out.println(s);
        con2.accept("一个是听得人当真了,一个是说的人当真了");
    }
}

函数式(Functional)接口

什么是函数式(Functional)接口

只包含一个抽象方法的接口,称为函数式接口。

你可以通过 Lambda 表达式来创建该接口的对象。(若 Lambda 表达式 抛出一个受检异常(即:非运行时异常),那么该异常需要在目标接口的抽象方法上进行声明)

我们可以在一个接口上使用 @FunctionalInterface 注解,这样做可以检查它是否是一个函数式接口。同时 javadoc 也会包含一条声明,说明这个接口是一个函数式接口。

在java.util.function包下定义了Java 8 的丰富的函数式接口

package com.jerry.java;
/**
 * @author jerry_jy
 * @create 2022-10-15 9:29
 */
@FunctionalInterface
public interface MyFunction {
    public String getValue(String str);
}

d277eae1e82c40a1b16271fd973f3d50.png

代码演示:

package com.jerry.java;
import org.junit.Test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.function.Consumer;
import java.util.function.Predicate;
/**
 * @author jerry_jy
 * @create 2022-10-14 17:48
 */
public class LambdaTest2 {
    /*
     * java内置的4大核心函数式接口
     *
     * 消费型接口 Consumer<T>     void accept(T t)
     * 供给型接口 Supplier<T>     T get()
     * 函数型接口 Function<T,R>   R apply(T t)
     * 断定型接口 Predicate<T>    boolean test(T t)
     */
    @Test
    public void test1() {
        happyTime(500, new Consumer<Double>() {
            @Override
            public void accept(Double aDouble) {
                System.out.println("学习太累了,去天上人间买了瓶矿泉水,价格为:" + aDouble);
            }
        });
        System.out.println("********************");
        happyTime(5, money -> System.out.println("学习太累了,去天上人间喝了口水,价格为:" + money));
    }
    public void happyTime(double money, Consumer<Double> con) {
        con.accept(money);
    }
    @Test
    public void test2(){
        List<String> list = Arrays.asList("北京","南京","天津","东京","西京","普京");
        List<String> filterStrs = filterString(list, new Predicate<String>() {
            @Override
            public boolean test(String s) {
                return s.contains("京");
            }
        });
        System.out.println(filterStrs);
        List<String> filterStrs1 = filterString(list,s -> s.contains("京"));
        System.out.println(filterStrs1);
    }
    //根据给定的规则,过滤集合中的字符串。此规则由Predicate的方法决定
    public List<String> filterString(List<String> list, Predicate<String> pre) {
        ArrayList<String> filterList = new ArrayList<>();
        for (String s : list) {
            if (pre.test(s)){
                filterList.add(s);
            }
        }
        return filterList;
    }
}

方法引用与构造器引用

方法引用(Method References)

当要传递给Lambda体的操作,已经有实现的方法了,可以使用方法引用!


方法引用可以看做是Lambda表达式深层次的表达。换句话说,方法引用就 是Lambda表达式,也就是函数式接口的一个实例,通过方法的名字来指向 一个方法,可以认为是Lambda表达式的一个语法糖。


要求:实现接口的抽象方法的参数列表和返回值类型,必须与方法引用的 方法的参数列表和返回值类型保持一致!


格式:使用操作符 “::” 将类(或对象) 与方法名分隔开来。


如下三种主要使用情况:


对象::实例方法名

类::静态方法名

类::实例方法名

代码演示:

package com.jerry.java;
import org.junit.Test;
import java.util.Comparator;
import java.util.function.BiPredicate;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.function.Supplier;
/**
 * @author jerry_jy
 * @create 2022-10-14 18:08
 */
public class MethodRefTest {
    /*
     * 方法引用的使用
     *
     * 1.使用情境:当要传递给Lambda体的操作,已经有实现的方法了,可以使用方法引用!
     *
     * 2.方法引用,本质上就是Lambda表达式,而Lambda表达式作为函数式接口的实例。所以
     *   方法引用,也是函数式接口的实例。
     *
     * 3. 使用格式:  类(或对象) :: 方法名
     *
     * 4. 具体分为如下的三种情况:
     *    情况1     对象 :: 非静态方法
     *    情况2     类 :: 静态方法
     *
     *    情况3     类 :: 非静态方法
     *
     * 5. 方法引用使用的要求:要求接口中的抽象方法的形参列表和返回值类型与方法引用的方法的
     *    形参列表和返回值类型相同!(针对于情况1和情况2)
     */
    // 情况一:对象 :: 实例方法
    //Consumer中的void accept(T t)
    //PrintStream中的void println(T t)
    @Test
    public void test1() {
        Consumer<String> con1 = str -> System.out.println(str);
        con1.accept("Tom");
        System.out.println("=======================");
        Consumer<String> con2 = System.out::println;
        con2.accept("Jerry");
    }
    //Supplier中的T get()
    //Employee中的String getName()
    @Test
    public void test2() {
        Employee emp = new Employee(1001, "Tom", 22, 2000);
        Supplier<String> sup1 = () -> emp.getName();
        System.out.println(sup1.get());
        System.out.println("====================");
        Supplier<String> sup2 = emp::getName;
        System.out.println(sup2.get());
    }
    // 情况二:类 :: 静态方法
    //Comparator中的int compare(T t1,T t2)
    //Integer中的int compare(T t1,T t2)
    @Test
    public void test3() {
        Comparator<Integer> com1 = (o1, o2) -> Integer.compare(o1, o2);
        System.out.println(com1.compare(5, 6));
        Comparator<Integer> com2 = Integer::compareTo;
        System.out.println(com2.compare(3, 4));
    }
    //Function中的R apply(T t)
    //Math中的Long round(Double d)
    @Test
    public void test4() {
        Function<Double, Long> func = new Function<Double, Long>() {
            @Override
            public Long apply(Double d) {
                return Math.round(d);
            }
        };
        System.out.println("======================");
        Function<Double, Long> func1 = d -> Math.round(d);
        System.out.println(func.apply(12.3));
        System.out.println("*******************");
        Function<Double,Long> func2 = Math::round;
        System.out.println(func2.apply(12.6));
    }
    // 情况三:类 :: 实例方法  (有难度)
    // Comparator中的int comapre(T t1,T t2)
    // String中的int t1.compareTo(t2)
    @Test
    public void test5() {
        Comparator<String> com1 = (s1,s2) -> s1.compareTo(s2);
        System.out.println(com1.compare("abc","abd"));
        System.out.println("*******************");
        Comparator<String> com2 = String :: compareTo;
        System.out.println(com2.compare("abd","abm"));
    }
    //BiPredicate中的boolean test(T t1, T t2);
    //String中的boolean t1.equals(t2)
    @Test
    public void test6() {
        BiPredicate<String,String> pre1 = (s1, s2) -> s1.equals(s2);
        System.out.println(pre1.test("abc","abc"));
        System.out.println("*******************");
        BiPredicate<String,String> pre2 = String :: equals;
        System.out.println(pre2.test("abc","abd"));
    }
    // Function中的R apply(T t)
    // Employee中的String getName();
    @Test
    public void test7() {
        Employee employee = new Employee(1001, "Jerry", 23, 6000);
        Function<Employee,String> func1 = e -> e.getName();
        System.out.println(func1.apply(employee));
        System.out.println("*******************");
        Function<Employee,String> func2 = Employee::getName;
        System.out.println(func2.apply(employee));
    }
}

构造器引用

package com.jerry.java;
import org.junit.Test;
import java.util.Arrays;
import java.util.function.BiFunction;
import java.util.function.Function;
import java.util.function.Supplier;
/**
 * @author jerry_jy
 * @create 2022-10-14 18:30
 */
public class ConstructorRefTest {
    /*
     * 一、构造器引用
     *      和方法引用类似,函数式接口的抽象方法的形参列表和构造器的形参列表一致。
     *      抽象方法的返回值类型即为构造器所属的类的类型
     *
     * 二、数组引用
     *     大家可以把数组看做是一个特殊的类,则写法与构造器引用一致。
     */
    //构造器引用
    //Supplier中的T get()
    //Employee的空参构造器:Employee()
    @Test
    public void test1(){
        Supplier<Employee> sup = new Supplier<Employee>() {
            @Override
            public Employee get() {
                return new Employee();
            }
        };
        System.out.println(sup.get());
        System.out.println("========================");
        Supplier<Employee> sup1 = ()->new Employee();
        System.out.println(sup1.get());
        System.out.println("*******************");
        Supplier<Employee> sup2 = Employee::new;
        System.out.println(sup2.get());
    }
    //Function中的R apply(T t)
    @Test
    public void test2(){
        Function<Integer,Employee> func1 = id -> new Employee(id);
        Employee employee = func1.apply(1001);
        System.out.println(employee);
        System.out.println("*******************");
        Function<Integer,Employee> func2 = Employee :: new;
        Employee employee1 = func2.apply(1002);
        System.out.println(employee1);
    }
    //BiFunction中的R apply(T t,U u)
    @Test
    public void test3(){
        BiFunction<Integer,String,Employee> func1 = (id, name) -> new Employee(id,name);
        System.out.println(func1.apply(1001,"Tom"));
        System.out.println("*******************");
        BiFunction<Integer,String,Employee> func2 = Employee :: new;
        System.out.println(func2.apply(1002,"Tom"));
    }
    //数组引用
    //Function中的R apply(T t)
    @Test
    public void test4(){
        Function<Integer,String[]> func1 = length -> new String[length];
        String[] arr1 = func1.apply(5);
        System.out.println(Arrays.toString(arr1));
        System.out.println("*******************");
        Function<Integer,String[]> func2 = String[] :: new;
        String[] arr2 = func2.apply(10);
        System.out.println(Arrays.toString(arr2));
    }
}

Stream API

Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。 使用 Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。 也可以使用 Stream API 来并行执行操作。简言之,Stream API 提供了一种 高效且易于使用的处理数据的方式。


为什么要使用Stream API


实际开发中,项目中多数数据源都来自于Mysql,Oracle等。但现在数 据源可以更多了,有MongDB,Radis等,而这些NoSQL的数据就需要 Java层面去处理。

Stream 和 Collection 集合的区别:Collection 是一种静态的内存数据 结构,而 Stream 是有关计算的。前者是主要面向内存,存储在内存中, 后者主要是面向 CPU,通过 CPU 实现计算。

Stream到底是什么呢?


是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。

“集合讲的是数据,Stream讲的是计算!”

注意:


①Stream 自己不会存储元素。

②Stream 不会改变源对象。相反,他们会返回一个持有结果的新Stream。

③Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。



a109883c9d974af58289acd43f20ab73.png


创建 Stream的四种方式

package com.jerry.java;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
import java.util.stream.IntStream;
import java.util.stream.Stream;
/**
 * @author jerry_jy
 * @create 2022-10-14 18:49
 */
public class StreamAPITest {
    /*
     * 1. Stream关注的是对数据的运算,与CPU打交道
     *    集合关注的是数据的存储,与内存打交道
     *
     * 2.
     * ①Stream 自己不会存储元素。
     * ②Stream 不会改变源对象。相反,他们会返回一个持有结果的新Stream。
     * ③Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行
     *
     * 3.Stream 执行流程
     * ① Stream的实例化
     * ② 一系列的中间操作(过滤、映射、...)
     * ③ 终止操作
     *
     * 4.说明:
     * 4.1 一个中间操作链,对数据源的数据进行处理
     * 4.2 一旦执行终止操作,就执行中间操作链,并产生结果。之后,不会再被使用
     *
     *
     *  测试Stream的实例化
     */
    //创建 Stream方式一:通过集合
    @Test
    public void test1() {
        List<Employee> employees = EmployeeData.getEmployees();
//        default Stream<E> stream() : 返回一个顺序流
        Stream<Employee> stream = employees.stream();
//        default Stream<E> parallelStream() : 返回一个并行流
        Stream<Employee> parallelStream = employees.parallelStream();
    }
    //创建 Stream方式二:通过数组
    @Test
    public void test2() {
        int[] arr = new int[]{1, 2, 3, 4, 5};
        IntStream stream = Arrays.stream(arr);
        Employee e1 = new Employee(1001, "Tom");
        Employee e2 = new Employee(1002, "Jerry");
        Employee[] arr1 = new Employee[]{e1, e2};
        Stream<Employee> stream1 = Arrays.stream(arr1);
    }
    //创建 Stream方式三:通过Stream的of()
    @Test
    public void test3() {
        Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5);
    }
    //创建 Stream方式四:创建无限流
    @Test
    public void test4() {
//      迭代
//      public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)
        //遍历前10个偶数
        Stream.iterate(0, t -> t + 2).limit(10).forEach(System.out::println);
//      生成
//      public static<T> Stream<T> generate(Supplier<T> s)
        Stream.generate(Math::random).limit(10).forEach(System.out::println);
    }
}

Stream 的中间操作

多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止 操作,否则中间操作不会执行任何的处理!而在终止操作时一次性全 部处理,称为“惰性求值”

1-筛选与切片


fa3dba5f5a284a79ab2f0afface6434d.png

    //1-筛选与切片
    @Test
    public void test1(){
        List<Employee> list = EmployeeData.getEmployees();
//        filter(Predicate p)——接收 Lambda , 从流中排除某些元素。
        Stream<Employee> stream = list.stream();
        //练习:查询员工表中薪资大于7000的员工信息
        stream.filter(employee -> employee.getSalary()>7000).forEach(System.out::println);
        System.out.println();
//        limit(n)——截断流,使其元素不超过给定数量。
        list.stream().limit(3).forEach(System.out::println);
        System.out.println();
//        skip(n) —— 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补
        list.stream().skip(3).forEach(System.out::println);
        System.out.println();
//        distinct()——筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素
        list.add(new Employee(1010,"刘强东",40,8000));
        list.add(new Employee(1010,"刘强东",41,8000));
        list.add(new Employee(1010,"刘强东",40,8000));
        list.add(new Employee(1010,"刘强东",40,8000));
        list.add(new Employee(1010,"刘强东",40,8000));
        list.stream().distinct().forEach(System.out::println);
    }

2-映 射


7addd55467de48018336bbf4ef65ba72.png

    //映射
    @Test
    public void test2(){
//        map(Function f)——接收一个函数作为参数,将元素转换成其他形式或提取信息,该函数会被应用到每个元素上,并将其映射成一个新的元素。
        List<String> list = Arrays.asList("aa","bb","cc","dd");
        list.stream().map(s -> s.toUpperCase(Locale.ROOT)).forEach(System.out::println);
        //        练习1:获取员工姓名长度大于3的员工的姓名。
        List<Employee> employees = EmployeeData.getEmployees();
        Stream<String> stream = employees.stream().map(Employee::getName);
        stream.filter(name->name.length()>3).forEach(System.out::println);
        System.out.println();
        //练习2:
        Stream<Stream<Character>> streamStream = list.stream().map(StreamAPITest1::fromStringToStream);
        streamStream.forEach(s ->{
            s.forEach(System.out::println);
        });
        System.out.println();
    }
    //将字符串中的多个字符构成的集合转换为对应的Stream的实例
    public static Stream<Character> fromStringToStream(String str){//aa
        ArrayList<Character> list = new ArrayList<>();
        for(Character c : str.toCharArray()){
            list.add(c);
        }
        return list.stream();
    }

3-排序

    //3-排序
    @Test
    public void test4(){
//        sorted()——自然排序
        List<Integer> list = Arrays.asList(12, 43, 65, 34, 87, 0, -98, 7);
        list.stream().sorted().forEach(System.out::println);
        //抛异常,原因:Employee没有实现Comparable接口
//        List<Employee> employees = EmployeeData.getEmployees();
//        employees.stream().sorted().forEach(System.out::println);
        //        sorted(Comparator com)——定制排序
        List<Employee> employees = EmployeeData.getEmployees();
        employees.stream().sorted((e1,e2)->{
            int ageValue = Integer.compare(e1.getAge(), e2.getAge());
            if (ageValue!=0){
                return ageValue;
            }else {
                return Double.compare(e1.getSalary(), e2.getSalary());
            }
        }).forEach(System.out::println);
    }

Stream 的终止操作

  • 终端操作会从流的流水线生成结果。其结果可以是任何不是流的值,例 如:List、Integer,甚至是 void 。
  • 流进行了终止操作后,不能再次使用。

1-匹配与查找

144c373cb20b40d4aac3b80828fb4920.png


46ecd721ca354c1fafd28b73acf9a7f9.png

    //1-匹配与查找
    @Test
    public void test1() {
        List<Employee> employees = EmployeeData.getEmployees();
//        allMatch(Predicate p)——检查是否匹配所有元素。
//          练习:是否所有的员工的年龄都大于18
        boolean match = employees.stream().allMatch(employee -> employee.getAge() > 18);
        System.out.println(match);
//        anyMatch(Predicate p)——检查是否至少匹配一个元素。
//         练习:是否存在员工的工资大于 10000
        boolean b = employees.stream().anyMatch(employee -> employee.getSalary() > 10000);
        System.out.println(b);
//        noneMatch(Predicate p)——检查是否没有匹配的元素。
//          练习:是否存在员工姓“雷”
        boolean b1 = employees.stream().noneMatch(employee -> employee.getName().startsWith("雷"));
        System.out.println(b1);
//        findFirst——返回第一个元素
        Optional<Employee> employee = employees.stream().findFirst();
        System.out.println(employee);
//        findAny——返回当前流中的任意元素
        Optional<Employee> employee1 = employees.parallelStream().findAny();
        System.out.println(employee1);
    }
    @Test
    public void test2() {
        List<Employee> employees = EmployeeData.getEmployees();
        // count——返回流中元素的总个数
        long count = employees.stream().count();
        System.out.println(count);
//        max(Comparator c)——返回流中最大值
//        练习:返回最高的工资:
        Stream<Double> stream = employees.stream().map(employee -> employee.getSalary());
        Optional<Double> max = stream.max(Double::compareTo);
        System.out.println(max);
//        min(Comparator c)——返回流中最小值
//        练习:返回最低工资的员工
        Optional<Employee> min = employees.stream().min((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));
        System.out.println(min);
        //        forEach(Consumer c)——内部迭代
        employees.stream().forEach(System.out::println);
        System.out.println("=====================================");
        //使用集合的遍历操作
        employees.forEach(System.out::println);
    }

2-归约fcc1f4543d8c4ba0a706a4e47e131453.png


备注:map 和 reduce 的连接通常称为 map-reduce 模式,因 Google 用它来进行网络搜索而出名

    //2-归约
    @Test
    public void test3() {
//        reduce(T identity, BinaryOperator)——可以将流中元素反复结合起来,得到一个值。返回 T
//        练习1:计算1-10的自然数的和
        List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        Integer sum = list.stream().reduce(0, Integer::sum);
        System.out.println(sum);
//        reduce(BinaryOperator) ——可以将流中元素反复结合起来,得到一个值。返回 Optional<T>
//        练习2:计算公司所有员工工资的总和
        List<Employee> employees = EmployeeData.getEmployees();
        Stream<Double> stream = employees.stream().map(Employee::getSalary);
        Optional<Double> sumSalary = stream.reduce(Double::sum);
        System.out.println(sumSalary);
//        Optional<Double> sumMoney = employees.stream().reduce((d1, d2) -> d1 + d2);
//        System.out.println(sumMoney.get());
    }

3-收集

98794401dc43447bb2ecd2179a2b71cb.png

Collector 接口中方法的实现决定了如何对流执行收集的操作(如收集到 List、Set、 Map)。 另外, Collectors 实用类提供了很多静态方法,可以方便地创建常见收集器实例, 具体方法与实例如下表:


b2ea23cd402f4f61b6a97c483092ce21.png

    //3-收集
    @Test
    public void test4() {
//        collect(Collector c)——将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法
//        练习1:查找工资大于6000的员工,结果返回为一个List或Set
        List<Employee> employees = EmployeeData.getEmployees();
        List<Employee> employeeList = employees.stream().filter(employee -> employee.getSalary() > 6000).collect(Collectors.toList());
        employeeList.forEach(System.out::println);
        System.out.println("====================================");
        Set<Employee> employeeSet = employees.stream().filter(employee -> employee.getSalary() > 6000).collect(Collectors.toSet());
        employeeSet.forEach(System.out::println);

Optional类

到目前为止,臭名昭著的空指针异常是导致Java应用程序失败的最常见原因。 以前,为了解决空指针异常,Google公司著名的Guava项目引入了Optional类, Guava通过使用检查空值的方式来防止代码污染,它鼓励程序员写更干净的代 码。受到Google Guava的启发,Optional类已经成为Java 8类库的一部分。


Optional 类(java.util.Optional) 是一个容器类,它可以保存类型T的值,代表 这个值存在。或者仅仅保存null,表示这个值不存在。原来用 null 表示一个值不 存在,现在 Optional 可以更好的表达这个概念。并且可以避免空指针异常。


Optional类的Javadoc描述如下:这是一个可以为null的容器对象。如果值存在 则isPresent()方法会返回true,调用get()方法会返回该对象


代码演示:

package com.jerry.java;
import org.junit.Test;
import java.util.Optional;
/**
 * @author jerry_jy
 * @create 2022-10-15 8:38
 */
/*
 * Optional类:为了在程序中避免出现空指针异常而创建的。
 *
 * 常用的方法:ofNullable(T t)
 *            orElse(T t)
 */
public class OptionalTest {
    /*
    Optional.of(T t) : 创建一个 Optional 实例,t必须非空;
    Optional.empty() : 创建一个空的 Optional 实例
    Optional.ofNullable(T t):t可以为null
     */
    @Test
    public void test1(){
        Girl girl = new Girl();
//        girl=null;
        //of(T t):保证t是非空的
        Optional<Girl> optionalGirl = Optional.of(girl);
    }
    @Test
    public void test2(){
        Girl girl = new Girl();
//        girl = null;
        //ofNullable(T t):t可以为null
        girl.setName("Tom");
        Optional<Girl> optionalGirl = Optional.ofNullable(girl);
        //orElse(T t1):如果当前的Optional内部封装的t是非空的,则返回内部的t.
        //如果内部的t是空的,则返回orElse()方法中的参数t1.
        Girl girl1 = optionalGirl.orElse(new Girl("赵丽颖"));
        System.out.println(girl1);
    }
    public String getGirlName(Boy boy){
        return boy.getGirl().getName();
    }
    @Test
    public void test3(){
        Boy boy = new Boy();
        boy = null;
        String girlName = getGirlName(boy);
        System.out.println(girlName);
    }
    //优化以后的getGirlName():
    public String getGirlName1(Boy boy){
        if(boy != null){
            Girl girl = boy.getGirl();
            if(girl != null){
                return girl.getName();
            }
        }
        return null;
    }
    @Test
    public void test4(){
        Boy boy = new Boy();
        boy = null;
        String girlName = getGirlName1(boy);
        System.out.println(girlName);
    }
    //使用Optional类的getGirlName():
    public String getGirlName2(Boy boy){
        Optional<Boy> boyOptional = Optional.ofNullable(boy);
        //此时的boy1一定非空
        Boy boy1 = boyOptional.orElse(new Boy(new Girl("迪丽热巴")));
        Girl girl = boy1.getGirl();
        Optional<Girl> girlOptional = Optional.ofNullable(girl);
        //girl1一定非空
        Girl girl1 = girlOptional.orElse(new Girl("古力娜扎"));
        return girl1.getName();
    }
    @Test
    public void test5(){
        Boy boy = null;
        boy = new Boy();
        boy = new Boy(new Girl());
        String girlName = getGirlName2(boy);
        System.out.println(girlName);
    }
}

END

相关文章
|
27天前
|
存储 安全 Java
Java Map新玩法:探索HashMap和TreeMap的高级特性,让你的代码更强大!
【10月更文挑战第17天】Java Map新玩法:探索HashMap和TreeMap的高级特性,让你的代码更强大!
54 2
|
28天前
|
存储 Java
深入探讨了Java集合框架中的HashSet和TreeSet,解析了两者在元素存储上的无序与有序特性。
【10月更文挑战第16天】本文深入探讨了Java集合框架中的HashSet和TreeSet,解析了两者在元素存储上的无序与有序特性。HashSet基于哈希表实现,添加元素时根据哈希值分布,遍历时顺序不可预测;而TreeSet利用红黑树结构,按自然顺序或自定义顺序存储元素,确保遍历时有序输出。文章还提供了示例代码,帮助读者更好地理解这两种集合类型的使用场景和内部机制。
38 3
|
28天前
|
存储 Java 数据处理
Java Set接口凭借其独特的“不重复”特性,在集合框架中占据重要地位
【10月更文挑战第16天】Java Set接口凭借其独特的“不重复”特性,在集合框架中占据重要地位。本文通过快速去重和高效查找两个案例,展示了Set如何简化数据处理流程,提升代码效率。使用HashSet可轻松实现数据去重,而contains方法则提供了快速查找的功能,彰显了Set在处理大量数据时的优势。
32 2
|
30天前
|
存储 算法 Java
Java Set因其“无重复”特性在集合框架中独树一帜
【10月更文挑战第14天】Java Set因其“无重复”特性在集合框架中独树一帜。本文深入解析Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定的数据结构(哈希表、红黑树)确保元素唯一性,并提供最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的`hashCode()`与`equals()`方法。
28 3
|
1月前
|
安全 Java API
Java 17新特性让你的代码起飞!
【10月更文挑战第4天】自Java 8发布以来,Java语言经历了多次重大更新,每一次都引入了令人兴奋的新特性,极大地提升了开发效率和代码质量。本文将带你从Java 8一路走到Java 17,探索那些能让你的代码起飞的关键特性。
76 1
|
10天前
|
分布式计算 Java API
Java 8引入了流处理和函数式编程两大新特性
Java 8引入了流处理和函数式编程两大新特性。流处理提供了一种声明式的数据处理方式,使代码更简洁易读;函数式编程通过Lambda表达式和函数式接口,简化了代码书写,提高了灵活性。此外,Java 8还引入了Optional类、新的日期时间API等,进一步增强了编程能力。这些新特性使开发者能够编写更高效、更清晰的代码。
24 4
|
25天前
|
存储 Java API
优雅地使用Java Map,通过掌握其高级特性和技巧,让代码更简洁。
【10月更文挑战第19天】本文介绍了如何优雅地使用Java Map,通过掌握其高级特性和技巧,让代码更简洁。内容包括Map的初始化、使用Stream API处理Map、利用merge方法、使用ComputeIfAbsent和ComputeIfPresent,以及Map的默认方法。这些技巧不仅提高了代码的可读性和维护性,还提升了开发效率。
47 3
|
25天前
|
存储 安全 Java
Java Map新玩法:深入探讨HashMap和TreeMap的高级特性
【10月更文挑战第19天】Java Map新玩法:深入探讨HashMap和TreeMap的高级特性,包括初始容量与加载因子的优化、高效的遍历方法、线程安全性处理以及TreeMap的自然排序、自定义排序、范围查询等功能,助你提升代码性能与灵活性。
24 2
|
1月前
|
Java 开发者
在Java的集合世界里,Set以其独特的特性脱颖而出,它通过“哈希魔法”和“红黑树防御”两大绝技
【10月更文挑战第13天】在Java的集合世界里,Set以其独特的特性脱颖而出。它通过“哈希魔法”和“红黑树防御”两大绝技,有效抵御重复元素的侵扰,确保集合的纯洁性和有序性。无论是“人海战术”还是“偷梁换柱”,Set都能从容应对,成为开发者手中不可或缺的利器。
31 6
|
28天前
|
Java 开发者
在Java集合世界中,Set以其独特的特性脱颖而出,专门应对重复元素
在Java集合世界中,Set以其独特的特性脱颖而出,专门应对重复元素。通过哈希表和红黑树两种模式,Set能够高效地识别并拒绝重复元素的入侵,确保集合的纯净。无论是HashSet还是TreeSet,都能在不同的场景下发挥出色的表现,成为开发者手中的利器。
26 2