技术派中的缓存一致性解决方案

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 技术派中的缓存一致性解决方案


今天就结合技术派项目,告诉大家如何去实现 MySQL 和 Redis 的一致性。

在讲解实战部分之前,我们还是先回顾一下理论知识,根据网上的众多解决方案,我们总结出 6 种:

你可以先想想,技术派会采用哪种方案呢?

一、理论知识

温馨提示:如果你对理论知识已经非常清楚,可以直接跳到文章的实战部分。

1.1 不好的方案

1. 先写 MySQL,再写 Redis

图解说明:

  • 这是一副时序图,描述请求的先后调用顺序;
  • 橘黄色的线是请求 A,黑色的线是请求 B;
  • 橘黄色的文字,是 MySQL 和 Redis 最终不一致的数据;
  • 数据是从 10 更新为 11;
  • 后面所有的图,都是这个含义,不再赘述。

请求 A、B 都是先写 MySQL,然后再写 Redis,在高并发情况下,如果请求 A 在写 Redis 时卡了一会,请求 B 已经依次完成数据的更新,就会出现图中的问题。

这个图已经画的很清晰了,我就不用再去啰嗦了吧,不过这里有个前提,就是对于读请求,先去读 Redis,如果没有,再去读 DB,但是读请求不会再回写 Redis。大白话说一下,就是读请求不会更新 Redis。

2. 先写 Redis,再写 MySQL

同“先写 MySQL,再写 Redis”,看图可秒懂。

3. 先删除 Redis,再写 MySQL

这幅图和上面有些不一样,前面的请求 A 和 B 都是更新请求,这里的请求 A 是更新请求,但是请求 B 是读请求,且请求 B 的读请求会回写 Redis。

请求 A 先删除缓存,可能因为卡顿,数据一直没有更新到 MySQL,导致两者数据不一致。

这种情况出现的概率比较大,因为请求 A 更新 MySQL 可能耗时会比较长,而请求 B 的前两步都是查询,会非常快。

1.2 好的方案

4. 先删除 Redis,再写 MySQL,再删除 Redis

对于“先删除 Redis,再写 MySQL”,如果要解决最后的不一致问题,其实再对 Redis 重新删除即可,这个也是大家常说的“缓存双删”。

为了便于大家看图,对于蓝色的文字,“删除缓存 10”必须在“回写缓存10”后面,那如何才能保证一定是在后面呢?网上给出的第一个方案是,让请求 A 的最后一次删除,等待 500ms。

对于这种方案,看看就行,反正我是不会用,太 Low 了,风险也不可控。

那有没有更好的方案呢,我建议异步串行化删除,即删除请求入队列。

异步删除对线上业务无影响,串行化处理保障并发情况下正确删除。

如果双删失败怎么办,网上有给 Redis 加一个缓存过期时间的方案,这个不敢苟同。个人建议整个重试机制,可以借助消息队列的重试机制,也可以自己整个表,记录重试次数,方法很多。

简单小结一下:

  • “缓存双删”不要用无脑的 sleep 500 ms;
  • 通过消息队列的异步&串行,实现最后一次缓存删除;
  • 缓存删除失败,增加重试机制。

5. 先写 MySQL,再删除 Redis

对于上面这种情况,对于第一次查询,请求 B 查询的数据是 10,但是 MySQL 的数据是 11,只存在这一次不一致的情况,对于不是强一致性要求的业务,可以容忍。(那什么情况下不能容忍呢,比如秒杀业务、库存服务等。)

当请求 B 进行第二次查询时,因为没有命中 Redis,会重新查一次 DB,然后再回写到 Reids。

这里需要满足 2 个条件:

  • 缓存刚好自动失效;
  • 请求 B 从数据库查出 10,回写缓存的耗时,比请求 A 写数据库,并且删除缓存的还长。

对于第二个条件,我们都知道更新 DB 肯定比查询耗时要长,所以出现这个情况的概率很小,同时满足上述条件的情况更小。

6. 先写 MySQL,通过 Binlog,异步更新 Redis

这种方案,主要是监听 MySQL 的 Binlog,然后通过异步的方式,将数据更新到 Redis,这种方案有个前提,查询的请求,不会回写 Redis。

这个方案,会保证 MySQL 和 Redis 的最终一致性,但是如果中途请求 B 需要查询数据,如果缓存无数据,就直接查 DB;如果缓存有数据,查询的数据也会存在不一致的情况。

所以这个方案,是实现最终一致性的终极解决方案,但是不能保证实时性。

1.3 几种方案比较

我们对比上面讨论的 6 种方案:

1、先写 Redis,再写 MySQL

  • 这种方案,我肯定不会用,万一 DB 挂了,你把数据写到缓存,DB 无数据,这个是灾难性的;
  • 我之前也见同学这么用过,如果写 DB 失败,对 Redis 进行逆操作,那如果逆操作失败呢,是不是还要搞个重试?

2、先写 MySQL,再写 Redis

  • 对于并发量、一致性要求不高的项目,很多就是这么用的,我之前也经常这么搞,但是不建议这么做;
  • 当 Redis 瞬间不可用的情况,需要报警出来,然后线下处理。

3、先删除 Redis,再写 MySQL

这种方式,我还真没用过,直接忽略吧。

4、先删除 Redis,再写 MySQL,再删除 Redis

这种方式虽然可行,但是感觉好复杂,还要搞个消息队列去异步删除 Redis。

5、先写 MySQL,再删除 Redis

  • 比较推荐这种方式,删除 Redis 如果失败,可以再多重试几次,否则报警出来;
  • 这个方案,是实时性中最好的方案,在一些高并发场景中,推荐这种。

6、先写 MySQL,通过 Binlog,异步更新 Redis

  • 对于异地容灾、数据汇总等,建议会用这种方式,比如 binlog + kafka,数据的一致性也可以达到秒级;
  • 纯粹的高并发场景,不建议用这种方案,比如抢购、秒杀等。

个人结论

  • 实时一致性方案 :采用“先写 MySQL,再删除 Redis”的策略,这种情况虽然也会存在两者不一致,但是需要满足的条件有点苛刻,所以是满足实时性条件下,能尽量满足一致性的最优解。
  • 最终一致性方案 :采用“先写 MySQL,通过 Binlog,异步更新 Redis”,可以通过 Binlog,结合消息队列异步更新 Redis,是最终一致性的最优解。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

二、项目实战

2.1 数据更新

因为项目对实时性要求高,所以采用方案 5,先写 MySQL,再删除 Redis 的方式。

下面只是一个示例,我们将文章的标签放入 MySQL 之后,再删除 Redis,所有涉及到 DB 更新的操作都需要按照这种方式处理。

这里加了一个事务,如果 Redis 删除失败,MySQL 的更新操作也需要回滚,避免查询时读取到脏数据。

@Override
@Transactional(rollbackFor = Exception.class)
public void saveTag(TagReq tagReq) {
    TagDO tagDO = ArticleConverter.toDO(tagReq);
    // 先写 MySQL
    if (NumUtil.nullOrZero(tagReq.getTagId())) {
        tagDao.save(tagDO);
    } else {
        tagDO.setId(tagReq.getTagId());
        tagDao.updateById(tagDO);
    }
    // 再删除 Redis
    String redisKey = CACHE_TAG_PRE + tagDO.getId();
    RedisClient.del(redisKey);
}
@Override
@Transactional(rollbackFor = Exception.class)
public void deleteTag(Integer tagId) {
    TagDO tagDO = tagDao.getById(tagId);
    if (tagDO != null){
        // 先写 MySQL
        tagDao.removeById(tagId);
        // 再删除 Redis
        String redisKey = CACHE_TAG_PRE + tagDO.getId();
        RedisClient.del(redisKey);
    }
}
@Override
public void operateTag(Integer tagId, Integer pushStatus) {
    TagDO tagDO = tagDao.getById(tagId);
    if (tagDO != null){
        // 先写 MySQL
        tagDO.setStatus(pushStatus);
        tagDao.updateById(tagDO);
        // 再删除 Redis
        String redisKey = CACHE_TAG_PRE + tagDO.getId();
        RedisClient.del(redisKey);
    }
}

2.2 数据获取

这个也很简单,先查询缓存,如果有就直接返回;如果未查询到,需要先查询 DB ,再写入缓存。

我们放入缓存时,加了一个过期时间,用于兜底,万一两者不一致,缓存过期后,数据会重新更新到缓存。

@Override
public TagDTO getTagById(Long tagId) {
    String redisKey = CACHE_TAG_PRE + tagId;
    // 先查询缓存,如果有就直接返回
    String tagInfoStr = RedisClient.getStr(redisKey);
    if (tagInfoStr != null && !tagInfoStr.isEmpty()) {
        return JsonUtil.toObj(tagInfoStr, TagDTO.class);
    }
    // 如果未查询到,需要先查询 DB ,再写入缓存
    TagDTO tagDTO = tagDao.selectById(tagId);
    tagInfoStr = JsonUtil.toStr(tagDTO);
    RedisClient.setStrWithExpire(redisKey, tagInfoStr, CACHE_TAG_EXPRIE_TIME);
    return tagDTO;
}

2.3 测试用例

/**
 * @author Louzai
 * @date 2023/5/5
 */
@Slf4j
public class MysqlRedisService extends BasicTest {
    @Autowired
    private TagSettingService tagSettingService;
    @Test
    public void save() {
        TagReq tagReq = new TagReq();
        tagReq.setTag("Java");
        tagReq.setTagId(1L);
        tagSettingService.saveTag(tagReq);
        log.info("save success:{}", tagReq);
    }
    @Test
    public void query() {
        TagDTO tagDTO = tagSettingService.getTagById(1L);
        log.info("query tagInfo:{}", tagDTO);
    }
}

我们看一下 Redis:

127.0.0.1:6379> get pai_cache_tag_pre_1
"{\"tagId\":1,\"tag\":\"Java\",\"status\":1,\"selected\":null}"

以及结果输出:

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

后记

这篇文章很基础,也非常实用,大家可以直接下载技术派项目,里面都有代码和测试用例,代码仓库详见:

https://github.com/itwanger/paicoding

后面我会把 RabbitMQ、ES、Nacos、MongoDB 和 prometheus 都集成到技术派项目,不为其它的,存粹为了自娱自乐。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
17天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
21天前
|
存储 缓存 负载均衡
从零到一:分布式缓存技术初探
分布式缓存通过将数据存储在多个节点上,利用负载均衡算法提高访问速度、降低数据库负载并增强系统可用性。常见产品有Redis、Memcached等。其优势包括性能扩展、高可用性、负载均衡和容错性,适用于页面缓存、应用对象缓存、状态缓存、并行处理、事件处理及极限事务处理等多种场景。
59 1
|
2月前
|
缓存 NoSQL 数据库
缓存穿透、缓存击穿和缓存雪崩及其解决方案
在现代应用中,缓存是提升性能的关键技术之一。然而,缓存系统也可能遇到一系列问题,如缓存穿透、缓存击穿和缓存雪崩。这些问题可能导致数据库压力过大,甚至系统崩溃。本文将探讨这些问题及其解决方案。
|
2月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
47 5
|
2月前
|
缓存 NoSQL 关系型数据库
mysql和缓存一致性问题
本文介绍了五种常见的MySQL与Redis数据同步方法:1. 双写一致性,2. 延迟双删策略,3. 订阅发布模式(使用消息队列),4. 基于事件的缓存更新,5. 缓存预热。每种方法的实现步骤、优缺点均有详细说明。
137 3
|
3月前
|
存储 缓存 数据库
缓存技术有哪些应用场景呢
【10月更文挑战第19天】缓存技术有哪些应用场景呢
|
3月前
|
存储 缓存 运维
缓存技术有哪些优缺点呢
【10月更文挑战第19天】缓存技术有哪些优缺点呢
|
3月前
|
缓存 监控 算法
小米面试题:多级缓存一致性问题怎么解决
【10月更文挑战第23天】在现代分布式系统中,多级缓存架构因其能够显著提高系统性能和响应速度而被广泛应用。
99 3
|
3月前
|
消息中间件 缓存 中间件
缓存一致性问题,这么回答肯定没毛病!
缓存一致性问题,这么回答肯定没毛病!
|
4月前
|
存储 缓存 NoSQL
解决Redis缓存击穿问题的技术方法
解决Redis缓存击穿问题的技术方法
87 2