总监问我:Kafka 为什么要抛弃 ZooKeeper?

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 总监问我:Kafka 为什么要抛弃 ZooKeeper?

在上个月 30 号, confluent 发布了一篇文章,文章上说在 Kafka 2.8 版本上将支持内部的 quorum 服务来替换 ZooKeeper 的工作。

其实去年我写的 Kafka 控制器事件处理全流程这篇文章已经提到这一点。

今天再稍微展开来说说。

ZooKeeper 的作用

ZooKeeper 是一个开源的分布式协调服务框架,你也可以认为它是一个可以保证一致性的分布式(小量)存储系统。特别适合存储一些公共的配置信息、集群的一些元数据等等。

它有持久节点和临时节点,而临时节点这个玩意再配合 Watcher 机制就很有用。

当创建临时节点的客户端与 ZooKeeper 断连之后,这个临时节点就会消失,并且订阅了节点状态变更的客户端会收到这个节点状态变更的通知。

所以集群中某一服务上线或者下线,都可以被检测到。因此可以用来实现服务发现,也可以实现故障转移的监听机制。

Kafka 就是强依赖于 ZooKeeper,没有 ZooKeeper 的话 Kafka 都无法运行。ZooKeeper 为 Kafka 提供了元数据的管理,例如一些 Broker 的信息、主题数据、分区数据等等。

在每个 Broker 启动的时候,都会和 ZooKeeper 进行交互,这样 ZooKeeper 就存储了集群中所有的主题、配置、副本等信息。

还有一些选举、扩容等机制也都依赖 ZooKeeper 。

例如控制器的选举:每个 Broker 启动都会尝试在 ZooKeeper 注册/controller临时节点来竞选控制器,第一个创建/controller节点的 Broker 会被指定为控制器。

竞争失败的节点也会依赖 watcher 机制,监听这个节点,如果控制器宕机了,那么其它 Broker 会继续来争抢,实现控制器的 failover。

从上面就可以得知 ZooKeeper 对 Kafka 来说很重要

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

那为什么要抛弃 ZooKeeper

软件架构都是演进的,之所以要变更那肯定是因为出现了瓶颈。

先来看看运维的层面的问题。

首先身为一个中间件,需要依赖另一个中间件,这就感觉有点奇怪。

你要说依赖 Netty 这种,那肯定是没问题的。但是 Kafka 的运行需要提供 ZooKeeper 集群,这其实有点怪怪的。

就等于如果你公司要上 Kafka 就得跟着上 ZooKeeper ,被动了增加了运维的复杂度。

好比你去商场买衣服,要买个上衣,服务员说不单卖,要买就得买一套,这钱是不是多花了?

所以运维人员不仅得照顾 Kafka 集群,还得照顾 ZooKeeper 集群。

再看性能层面的问题。

ZooKeeper 有个特点,强一致性

如果 ZooKeeper 集群的某个节点的数据发生变更,则会通知其它 ZooKeeper 节点同时执行更新,就得等着大家(超过半数)都写完了才行,这写入的性能就比较差了。

然后看到上面我说的小量 存储系统了吧,一般而言,ZooKeeper 只适用于存储一些简单的配置或者是集群的元数据,不是真正意义上的存储系统。

如果写入的数据量过大,ZooKeeper 的性能和稳定性就会下降,可能导致 Watch 的延时或丢失。

所以在 Kafka 集群比较大,分区数很多的时候,ZooKeeper 存储的元数据就会很多,性能就差了。

还有,ZooKeeper 也是分布式的,也需要选举,它的选举也不快,而且发生选举的那段时候是不提供服务的!

基于 ZooKeeper 的性能问题 Kafka 之前就做了一些升级。

例如以前 Consumer 的位移数据是保存在 ZooKeeper 上的,所以当提交位移或者获取位移的时候都需要访问 ZooKeeper ,这量一大 ZooKeeper 就顶不住。

所以后面引入了位移主题(Topic 是 __consumer_offsets),将位移的提交和获取当做消息一样来处理,存储在日志中,避免了频繁访问 ZooKeeper 性能差的问题。

还有像一些大公司,可能要支持百万分区级别,这目前的 Kafka 单集群架构下是无法支持稳定运行的,也就是目前单集群可以承载的分区数有限。

所以,Kafka 需要去 ZooKeeper 。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

所以没了 Zookeeper 之后的 Kafka 的怎样的?

没了 Zookeeper 的 Kafka 就把元数据存储到自己内部了,利用之前的 Log 存储机制来保存元数据。

就和上面说到的位移主题一样,会有一个元数据主题,元数据会像普通消息一样保存在 Log 中。

所以元数据和之前的位移一样,利用现有的消息存储机制稍加改造来实现了功能,完美!

然后还搞了个 KRaft 来实现 Controller Quorum。

图来自 confluent

这个协议是基于 Raft 的,协议具体就不展开了,就理解为它能解决 Controller  Leader 的选举,并且让所有节点达成共识。

在之前基于 Zookeeper 实现的单个 Controller 在分区数太大的时候还有个问题,故障转移太慢了。

当 Controller 变更的时候,需要重新加载所有的元数据到新的 Controller 身上,并且需要把这些元数据同步给集群内的所有 Broker。

而 Controller Quorum 中的 Leader 选举切换则很快,因为元数据都已经在 quorum 中同步了,也就是 quorum 的 Broker 都已经有全部了元数据,所以不需要重新加载元数据!

并且其它 Broker 已经基于 Log 存储了一些元数据,所以只需要增量更新即可,不需要全量了。

这波改造下来就解决了之前元数据过多的问题,可以支持更多的分区!

最后

可能看到这里有人会说,那为何一开始不这么实现?

因为 ZooKeeper 是一个功能强大且经过验证的工具,在早期利用它来实现一些功能,多简单哟,都不需要自己实现。

要不是 ZooKeeper 的机制导致了这个瓶颈,也不可能会有这个改造的。

软件就是这样,没必要重复造轮子,合适就好。

相关文章
|
1月前
|
消息中间件 运维 算法
Kafka 为什么要抛弃 Zookeeper?
本文探讨了Kafka为何逐步淘汰ZooKeeper。长久以来,ZooKeeper作为Kafka的核心组件,负责集群管理和协调任务。然而,随着Kafka的发展,ZooKeeper带来的复杂性增加、性能瓶颈及一致性问题日益凸显。为解决这些问题,Kafka引入了KRaft,这是一种基于Raft算法的内置元数据管理方案,不仅简化了部署流程,还提升了系统的一致性和扩展性。本文详细分析了这一转变背后的原因及其带来的优势,并展望了Kafka未来的发展方向。
104 1
|
1月前
|
消息中间件 监控 Ubuntu
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
72 3
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
|
1月前
|
消息中间件 Java Kafka
ELFK对接zookeeper&kafka
ELFK对接zookeeper&kafka
|
3月前
|
消息中间件 存储 Kafka
ZooKeeper助力Kafka:掌握这四大作用,让你的消息队列系统稳如老狗!
【8月更文挑战第24天】Kafka是一款高性能的分布式消息队列系统,其稳定运行很大程度上依赖于ZooKeeper提供的分布式协调服务。ZooKeeper在Kafka中承担了四大关键职责:集群管理(Broker的注册与选举)、主题与分区管理、领导者选举机制以及消费者组管理。通过具体的代码示例展示了这些功能的具体实现方式。
97 2
|
4月前
|
消息中间件 存储 Kafka
kafka 在 zookeeper 中保存的数据内容
kafka 在 zookeeper 中保存的数据内容
50 3
|
1月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
|
1月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
45 1
|
3月前
|
消息中间件 Java Kafka
Kafka不重复消费的终极秘籍!解锁幂等性、偏移量、去重神器,让你的数据流稳如老狗,告别数据混乱时代!
【8月更文挑战第24天】Apache Kafka作为一款领先的分布式流处理平台,凭借其卓越的高吞吐量与低延迟特性,在大数据处理领域中占据重要地位。然而,在利用Kafka进行数据处理时,如何有效避免重复消费成为众多开发者关注的焦点。本文深入探讨了Kafka中可能出现重复消费的原因,并提出了四种实用的解决方案:利用消息偏移量手动控制消费进度;启用幂等性生产者确保消息不被重复发送;在消费者端实施去重机制;以及借助Kafka的事务支持实现精确的一次性处理。通过这些方法,开发者可根据不同的应用场景灵活选择最适合的策略,从而保障数据处理的准确性和一致性。
267 9
|
3月前
|
消息中间件 负载均衡 Java
"Kafka核心机制揭秘:深入探索Producer的高效数据发布策略与Java实战应用"
【8月更文挑战第10天】Apache Kafka作为顶级分布式流处理平台,其Producer组件是数据高效发布的引擎。Producer遵循高吞吐、低延迟等设计原则,采用分批发送、异步处理及数据压缩等技术提升性能。它支持按消息键值分区,确保数据有序并实现负载均衡;提供多种确认机制保证可靠性;具备失败重试功能确保消息最终送达。Java示例展示了基本配置与消息发送流程,体现了Producer的强大与灵活性。
67 3
|
3月前
|
vr&ar 图形学 开发者
步入未来科技前沿:全方位解读Unity在VR/AR开发中的应用技巧,带你轻松打造震撼人心的沉浸式虚拟现实与增强现实体验——附详细示例代码与实战指南
【8月更文挑战第31天】虚拟现实(VR)和增强现实(AR)技术正深刻改变生活,从教育、娱乐到医疗、工业,应用广泛。Unity作为强大的游戏开发引擎,适用于构建高质量的VR/AR应用,支持Oculus Rift、HTC Vive、Microsoft HoloLens、ARKit和ARCore等平台。本文将介绍如何使用Unity创建沉浸式虚拟体验,包括设置项目、添加相机、处理用户输入等,并通过具体示例代码展示实现过程。无论是完全沉浸式的VR体验,还是将数字内容叠加到现实世界的AR应用,Unity均提供了所需的一切工具。
133 0