你只会用 xxl-job?一款更强大、新一代分布式任务调度框架,很不错!

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 你只会用 xxl-job?一款更强大、新一代分布式任务调度框架,很不错!

概述

PowerJob是新一代分布式任务调度与计算框架,支持CRON、API、固定频率、固定延迟等调度策略,提供工作流来编排任务解决依赖关系,能让您轻松完成作业的调度与繁杂任务的分布式计算。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

为什么选择PowerJob?

当前市面上流行的作业调度框架有老牌的Quartz、基于Quartz的elastic-job和原先基于Quartz后面移除依赖的xxl-job,这里分别谈一些这些框架现存的缺点。

Quartz可以视为第一代任务调度框架,基本上是现有所有分布式调度框架的“祖宗”。由于历史原因,它不提供Web界面,只能通过API完成任务的配置,使用起来不够方便和灵活,同时它仅支持单机执行,无法有效利用整个集群的计算能力。

xxl-job可以视为第二代任务调度框架,在一定程度上解决了Quartz的不足,在过去几年中是个非常优秀的调度框架,不过放到今天来看,还是存在着一些不足的,具体如下:

  • 数据库支持单一: 仅支持MySQL,使用其他DB需要自己魔改代码
  • 有限的分布式计算能力: 仅支持静态分片,无法很好的完成复杂任务的计算
  • 不支持工作流: 无法配置各个任务之间的依赖关系,不适用于有DAG需求的场景

正所谓长江后浪推前浪,在如今这个数据量日益增长、业务越来越复杂的年代,急需一款更为强大的任务调度框架来解决上诉问题,而PowerJob因此应运而生。

PowerJob可以被认为是第三代任务调度框架,在任务调度的基础上,还额外提供了分布式计算和工作流功能,其主要特性如下:

  • 使用简单: 提供前端Web界面,允许开发者可视化地完成调度任务的管理(增、删、改、查)、任务运行状态监控和运行日志查看等功能。
  • 定时策略完善: 支持CRON表达式、固定频率、固定延迟和API四种定时调度策略。
  • 执行模式丰富: 支持单机、广播、Map、MapReduce四种执行模式,其中Map/MapReduce处理器能使开发者寥寥数行代码便获得集群分布式计算的能力。
  • DAG工作流支持: 支持在线配置任务依赖关系,可视化得对任务进行编排,同时还支持上下游任务间的数据传递
  • 执行器支持广泛: 支持Spring Bean、内置/外置Java类、Shell、Python等处理器,应用范围广。
  • 运维便捷: 支持在线日志功能,执行器产生的日志可以在前端控制台页面实时显示,降低debug成本,极大地提高开发效率。
  • 依赖精简: 最小仅依赖关系型数据库(MySQL/PostgreSQL/Oracle/MS SQLServer…),同时支持所有Spring Data JPA所支持的关系型数据库。
  • 高可用&高性能: 调度服务器经过精心设计,一改其他调度框架基于数据库锁的策略,实现了无锁化调度。部署多个调度服务器可以同时实现高可用和性能的提升(支持无限的水平扩展)。
  • 故障转移与恢复: 任务执行失败后,可根据配置的重试策略完成重试,只要执行器集群有足够的计算节点,任务就能顺利完成。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

同类产品对比


QuartZ xxl-job SchedulerX 2.0 PowerJob
定时类型 CRON CRON CRON、固定频率、固定延迟、OpenAPI CRON、固定频率、固定延迟、OpenAPI
任务类型 内置Java 内置Java、GLUE Java、Shell、Python等脚本 内置Java、外置Java(FatJar)、Shell、Python等脚本 内置Java、外置Java(容器)、Shell、Python等脚本
分布式任务 静态分片 MapReduce动态分片 MapReduce动态分片
在线任务治理 不支持 支持 支持 支持
日志白屏化 不支持 支持 不支持 支持
调度方式及性能 基于数据库锁,有性能瓶颈 基于数据库锁,有性能瓶颈 不详 无锁化设计,性能强劲无上限
报警监控 邮件 短信 邮件,提供接口允许开发者扩展
系统依赖 JDBC支持的关系型数据库(MySQL、Oracle…) MySQL 人民币(公测期间免费,哎,帮打个广告吧) 任意Spring Data Jpa支持的关系型数据库(MySQL、Oracle…)
DAG工作流 不支持 不支持 支持 支持

适用场景

有定时执行需求的业务场景:如每天凌晨全量同步数据、生成业务报表等。

有需要全部机器一同执行的业务场景:如使用广播执行模式清理集群日志。

有需要分布式处理的业务场景:比如需要更新一大批数据,单机执行耗时非常长,可以使用Map/MapReduce处理器完成任务的分发,调动整个集群加速计算。

整体架构

快速开始

PowerJob由调度服务器(powerjob-server)和执行器(powerjob-worker)两部分组成,powerjob-server负责提供Web服务和完成任务的调度,powerjob-worker则负责执行用户所编写的任务代码,同时提供分布式计算能力。

初始化项目

git clone https://github.com/KFCFans/PowerJob.git

导入 IDE,源码结构如下,我们需要启动调度服务器(powerjob-server),同时在samples工程中编写自己的处理器代码

启动调度服务器

创建数据库 powerjob-daily

修改配置文件,配置文件的说明官方文档写的非常详细,此处不再赘述。需要修改的地方为数据库配置spring.datasource.core.jdbc-urlspring.datasource.core.usernamespring.datasource.core.password,当然,有mongoDB的同学也可以修改spring.data.mongodb.uri以获取完全版体验。

oms.env=DAILY
logging.config=classpath:logback-dev.xml
###### 数据库配置 #######
spring.datasource.core.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.core.jdbc-url=jdbc:mysql://remotehost:3306/powerjob-daily?useUnicode=true&characterEncoding=UTF-8
spring.datasource.core.username=root
spring.datasource.core.password=No1Bug2Please3!
spring.datasource.core.hikari.maximum-pool-size=20
spring.datasource.core.hikari.minimum-idle=5
###### mongoDB配置,非核心依赖,可移除 #######
spring.data.mongodb.uri=mongodb://remotehost:27017/powerjob-daily
###### 邮件配置(启用邮件报警则需要) #######
spring.mail.host=smtp.163.com
spring.mail.username=zqq
spring.mail.password=qqz
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
###### 资源清理配置 #######
oms.log.retention.local=1
oms.log.retention.remote=1
oms.container.retention.local=1
oms.container.retention.remote=-1
oms.instanceinfo.retention=1
###### 缓存配置 #######
oms.instance.metadata.cache.size=1024

完成配置文件的修改后,可以直接通过启动类com.github.kfcfans.powerjob.server.OhMyApplication启动调度服务器,观察启动日志,查看是否启动成功~启动成功后,访问 http://127.0.0.1:7700/ ,如果能顺利出现Web界面,则说明调度服务器启动成功!

注册应用:点击主页应用注册按钮,填入 oms-test和控制台密码(用于进入控制台),注册示例应用(当然你也可以注册其他的appName,只是别忘记在示例程序中同步修改~)

编写示例代码

进入示例工程(powerjob-worker-samples),修改配置文件连接powerjob-server并编写自己的处理器代码。

修改powerjob-worker-samples的启动配置类com.github.kfcfans.powerjob.samples.OhMySchedulerConfig,将AppName修改为刚刚在控制台注册的名称。

@Configuration
public class OhMySchedulerConfig {
    @Bean
    public OhMyWorker initOMS() throws Exception {
        // 服务器HTTP地址(端口号为 server.port,而不是 ActorSystem port)
        List<String> serverAddress = Lists.newArrayList("127.0.0.1:7700");
        // 1. 创建配置文件
        OhMyConfig config = new OhMyConfig();
        config.setPort(27777);
        config.setAppName("oms-test");
        config.setServerAddress(serverAddress);
        // 如果没有大型 Map/MapReduce 的需求,建议使用内存来加速计算
        config.setStoreStrategy(StoreStrategy.MEMORY);
        // 2. 创建 Worker 对象,设置配置文件
        OhMyWorker ohMyWorker = new OhMyWorker();
        ohMyWorker.setConfig(config);
        return ohMyWorker;
    }
}

编写自己的处理器:随便找个地方新建类,继承你想要使用的处理器(各个处理器的介绍可见官方文档,文档非常详细),这里为了简单演示,选择使用单机处理器BasicProcessor,以下是代码示例。

@Slf4j
@Component
public class StandaloneProcessorDemo implements BasicProcessor {
    @Override
    public ProcessResult process(TaskContext context) throws Exception {
        OmsLogger omsLogger = context.getOmsLogger();
        omsLogger.info("StandaloneProcessorDemo start process,context is {}.", context);
        System.out.println("jobParams is " + context.getJobParams());
        return new ProcessResult(true, "process successfully~");
    }
}

启动示例程序,即直接运行主类com.github.kfcfans.powerjob.samples.SampleApplication,观察控制台输出信息,判断是否启动成功。

任务的配置与运行

调度服务器与示例工程都启动完毕后,再次前往Web页面( http://127.0.0.1:7700/ ),进行任务的配置与运行。

在首页输入框输入配置的应用名称,成功操作后会正式进入前端管理界面。

点击任务管理 -> 新建任务(右上角),开始创建任务。

完成任务创建后,即可在控制台看到刚才创建的任务,如果觉得等待调度太过于漫长,可以直接点击运行按钮,立即运行本任务。

前往任务示例边栏,查看任务的运行状态和在线日志

基础的教程到这里也就结束了~更多功能示例可见官方文档,工作流、MapReduce、容器等高级特性等你来探索!

相关链接

项目地址:

官方文档:

在线试用:

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
1天前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
18 3
|
5天前
|
机器学习/深度学习 并行计算 Java
谈谈分布式训练框架DeepSpeed与Megatron
【11月更文挑战第3天】随着深度学习技术的不断发展,大规模模型的训练需求日益增长。为了应对这种需求,分布式训练框架应运而生,其中DeepSpeed和Megatron是两个备受瞩目的框架。本文将深入探讨这两个框架的背景、业务场景、优缺点、主要功能及底层实现逻辑,并提供一个基于Java语言的简单demo例子,帮助读者更好地理解这些技术。
16 2
|
26天前
|
分布式计算 Hadoop
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
39 1
|
2月前
|
数据采集 分布式计算 MaxCompute
MaxCompute 分布式计算框架 MaxFrame 服务正式商业化公告
MaxCompute 分布式计算框架 MaxFrame 服务于北京时间2024年09月27日正式商业化!
68 3
|
2月前
|
负载均衡 监控 Dubbo
分布式框架-dubbo
分布式框架-dubbo
|
26天前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
41 0
|
2月前
|
XML 负载均衡 监控
分布式-dubbo-简易版的RPC框架
分布式-dubbo-简易版的RPC框架
|
18天前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
102 2
基于Redis的高可用分布式锁——RedLock
|
3月前
|
缓存 NoSQL Java
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
这篇文章是关于如何在SpringBoot应用中整合Redis并处理分布式场景下的缓存问题,包括缓存穿透、缓存雪崩和缓存击穿。文章详细讨论了在分布式情况下如何添加分布式锁来解决缓存击穿问题,提供了加锁和解锁的实现过程,并展示了使用JMeter进行压力测试来验证锁机制有效性的方法。
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】