前言:
我们在日常维护数据库的时候,经常会遇到查询慢的语句,这时候一般会通过执行EXPLAIN去查看它的执行计划,但是执行计划往往只给我们带来了最基础的分析信息,比如是否有使用索引,还有一些其他供我们分析的信息,比如使用了临时表、排序等等,却无法展示为什么一些其他的执行计划未被选择,比如说明明有索引,或者好几个索引,但是为什么查询时未使用到期望的索引等
explain select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20; +----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+ | 1 | SIMPLE | t2 | NULL | range | id_num_unique,idx_age,idx_age_id_num | idx_age | 1 | NULL | 9594 | 100.00 | Using index condition | | 1 | SIMPLE | t1 | NULL | eq_ref | id_num_unique,idx_age | id_num_unique | 60 | test.t2.id_num | 1 | 50.00 | Using where | +----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+ 2 rows in set, 1 warning (0.01 sec)
如上面这个例子,为什么t2表上列出了多个可能使用的索引,却选择了idx_age,优化器为什么选择了指定的索引,这时候并不能直观的看出问题,这时候我们就可以开启optimizer_trace跟踪分析MySQL具体是怎么选择出最优的执行计划的。
OPTIMIZER_TRACE:
optimizer_trace是什么:
optimizer_trace是一个具有跟踪功能的工具,可以跟踪执行的语句的解析优化执行过程,并将跟踪到的信息记录到INFORMATION_SCHEMA.OPTIMIZER_TRACE表中,但是每个会话都只能跟踪它自己执行的语句,并且表中默认只记录最后一个查询的跟踪结果
使用方法:
# 打开optimizer trace功能 (默认情况下它是关闭的): set optimizer_trace="enabled=on"; select ...; # 这里输入你自己的查询语句 SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE; # 当你停止查看语句的优化过程时,把optimizer trace功能关闭 set optimizer_trace="enabled=off";
相关参数:
mysql> show variables like '%optimizer_trace%'; +------------------------------+----------------------------------------------------------------------------+ | Variable_name | Value | +------------------------------+----------------------------------------------------------------------------+ | optimizer_trace | enabled=on,one_line=off | | optimizer_trace_features | greedy_search=on,range_optimizer=on,dynamic_range=on,repeated_subselect=on | | optimizer_trace_limit | 1 | | optimizer_trace_max_mem_size | 1048576 | | optimizer_trace_offset | -1 | +------------------------------+----------------------------------------------------------------------------+
- optimizer_trace: enabled 开启/关闭optimizer_trace,one_line 是否单行显示,关闭为json模式,一般不开启
- optimizer_trace_features:跟踪信息中可打印的项,一般不调整默认打印所有项
- optimizer_trace_limit:存储的跟踪sql条数
- optimizer_trace_offset:开始记录的sql语句的偏移量,负数表示从最近执行倒数第几条开始记录
- optimizer_trace_max_mem_size:optimizer_trace内存的大小,如果跟踪信息超过这个大小,信息将会被截断
optimizer_trace表信息:
该表总共有4个字段
- QUERY 表示我们的查询语句。
- TRACE 表示优化过程的JSON格式文本。(重点关注)
- MISSING_BYTES_BEYOND_MAX_MEM_SIZE 由于优化过程可能会输出很多,如果超过某个限制时,多余的文本将不会被显示,这个字段展示了被忽略的文本字节数。
- INSUFFICIENT_PRIVILEGES 表示是否没有权限查看优化过程,默认值是0,只有某些特殊情况下才会是 1,我们暂时不关心这个字段的值。
信息解读:
通过 optimizer_trace表的query字段可以看到,一条语句的执行过程主要分为三个步骤:
"join_preparation": {},(准备阶段) "join_optimization": {},(优化阶段) "join_execution": {},(执行阶段)
各个步骤的详细内容解读:
- preparation:
expanded_query :将语句进行格式化,补充隐藏的列名和表名等 transformations_to_nested_joins :查询重写,比如join的on改为where语句
- optimization:
condition_processing{ :条件句处理。 transformation{:转换类型句。这三次的转换分别是 equality_propagation(等值条件句转换),如:a = b and b = c and c = 5 constant_propagation(常量条件句转换),如:a = 1 AND b > a trivial_condition_removal(无效条件移除的转换),如:1 = 1 } } substitute_generated_columns :替换虚拟生成列,测试了很多sql,这一列都没有看到有用的信息 table_dependencies :梳理表之间的依赖关系。 ref_optimizer_key_uses :如果优化器认为查询可以使用ref的话,在这里列出可以使用的索引。 rows_estimation{ :估算表行数和扫描的代价。如果查询中存在range扫描的话,对range扫描进行计划分析及代价估算。 table_scan:全表扫描的行数(rows)以及所需要的代价(cost)。 potential_range_indexes:该阶段会列出表中所有的索引并分析其是否可用,并且还会列出索引中可用的列字段。 analyzing_range_alternatives :分析可选方案的代价。 } considered_execution_plans{ :对比各可行计划的代价,选择相对最优的执行计划。 plan_prefix:前置的执行计划。 best_access_path:当前最优的执行顺序信息结果集。 access_type表示使用索引的方式,可参照为explain中的type字段。 condition_filtering_pct:类似于explain中的filtered列,这是一个估算值。 rows_for_plan:该执行计划最终的扫描行数,这里的行数其实也是估算值,是由considered_access_paths的resulting_rows相乘之后再乘以condition_filtering_pct获得。 cost_for_plan:该执行计划的执行代价,由considered_access_paths的cost相加而得。 chosen:是否选择了该执行计划。 } attaching_conditions_to_tables :添加附加条件,使得条件尽可能筛选单表数据。 refine_plan :优化后的执行计划。
trace信息中的json信息很长,因为我们关心的是不同执行计划的cost区别,所以只需要重点关注两个部分rows_estimation 和considered_execution_plans
代价模型计算:
统计信息和cost计算参数:
计算cost会涉及到表的主键索引数据页(聚簇索引)数量和表中的记录数,两个信息都可以通过innodb的表统计信息mysql.innodb_table_stats查到,n_rows是记录数,clustered_index_size是聚簇索引页数。
mysql> select * from mysql.innodb_table_stats where table_name='basic_person_info'; +---------------+-------------------+---------------------+--------+----------------------+--------------------------+ | database_name | table_name | last_update | n_rows | clustered_index_size | sum_of_other_index_sizes | +---------------+-------------------+---------------------+--------+----------------------+--------------------------+ | test | basic_person_info | 2022-12-23 18:27:24 | 86632 | 737 | 1401 | +---------------+-------------------+---------------------+--------+----------------------+--------------------------+ 1 row in set (0.01 sec)
代价模型将操作分为Server层和Engine(存储引擎)层两类,Server层主要是CPU代价,Engine层主要是IO代价,比如MySQL从磁盘读取一个数据页的代价io_block_read_cost为1,从buffer pool读取的代价memory_block_read_cost为0.25,计算符合条件的行代价为row_evaluate_cost为0.1,除此之外还有:
- memory_temptable_create_cost (default 1.0) 内存临时表的创建代价。
- memory_temptable_row_cost (default 0.1) 内存临时表的行代价。
- key_compare_cost (default 0.1) 键比较的代价,例如排序。
- disk_temptable_create_cost (default 20.0) 内部myisam或innodb临时表的创建代价。
- disk_temptable_row_cost (default 0.5) 内部myisam或innodb临时表的行代价。
这些都可以通过mysql.server_cost、mysql.engine_cost查看defalt值和设置值
mysql> select * from mysql.server_cost; +------------------------------+------------+---------------------+---------+---------------+ | cost_name | cost_value | last_update | comment | default_value | +------------------------------+------------+---------------------+---------+---------------+ | disk_temptable_create_cost | NULL | 2022-05-11 16:09:37 | NULL | 20 | | disk_temptable_row_cost | NULL | 2022-05-11 16:09:37 | NULL | 0.5 | | key_compare_cost | NULL | 2022-05-11 16:09:37 | NULL | 0.05 | | memory_temptable_create_cost | NULL | 2022-05-11 16:09:37 | NULL | 1 | | memory_temptable_row_cost | NULL | 2022-05-11 16:09:37 | NULL | 0.1 | | row_evaluate_cost | NULL | 2022-05-11 16:09:37 | NULL | 0.1 | +------------------------------+------------+---------------------+---------+---------------+
mysql> select * from mysql.engine_cost; +-------------+-------------+------------------------+------------+---------------------+---------+---------------+ | engine_name | device_type | cost_name | cost_value | last_update | comment | default_value | +-------------+-------------+------------------------+------------+---------------------+---------+---------------+ | default | 0 | io_block_read_cost | NULL | 2022-05-11 16:09:37 | NULL | 1 | | default | 0 | memory_block_read_cost | NULL | 2023-01-09 11:17:39 | NULL | 0.25 | +-------------+-------------+------------------------+------------+---------------------+---------+---------------+
计算公式:
如上面介绍的一样,代价模型将操作分为两类io_cost和cpu_cost,io_cost+cpu_cost就是总的cost,下面是具体的计算方法:
全表扫描:
全表扫描成本 = io_cost + 1.1 + cpu_cost + 1 (io_cost +1.1和cpu_cost +1在代码里是直接硬加上的,不知道为什么,计算的时候直接加上)
io_cost = clustered_index_size (统计信息中的主键页数) * avg_single_page_cost(读取一个页的平均成本)
avg_single_page_cost = pages_in_memory_percent * 0.25(memory_block_read_cost) + pages_on_disk_percent * 1.0(io_block_read_cost)
pages_in_memory_percent 表示已经加载到 Buffer Pool 中的叶结点占所有叶结点的比例 pages_on_disk_percent 表示没有加载到 Buffer Pool 中的叶结点占所有叶结点的比例
所以当数据已经全部读取到buffer pool中的时候:
io_cost=clustered_index_size * 0.25
都没有读取到buffer pool中的时候:
io_cost=clustered_index_size * 1.0
当部分数据在buffer pool中,部分数据需要从磁盘读取时,这时的系数介于0.25到1之间
cpu_cost = n_rows(统计信息中记录数) * 0.1(row_evaluate_cost)
走索引的成本:
和全表扫描的计算方法类似,其中io_cost与搜索的区间数有关,比如扫描三个区间where a between 1 and 10 or a between 20 and 30 or a between 40 and 50,此时:
io_cost=3 * avg_single_page_cost
cpu_cost=记录数 * 0.1(row_evaluate_cost)+0.01(代码中的微调参数)
针对二级索引还会有回表的操作:
MySQL认为每次回表都相当于是访问一个页面,所以每次回表都会进行一次IO,这部分成本:
io_cost=rows(记录数)*avg_single_page_cost
对回表查询的数据还需要进行一次计算:
cpu_cost=rows(记录数) * 0.1(row_evaluate_cost)(需要注意的是当索引需要回表扫描时,在rows_estimation阶段并不会计算这个值,在considered_execution_plans阶段会重新加上这部分成本)
所以针对需要回表的查询:
io_cost=查询区间 * avg_single_page_cost + rows(记录数) * avg_single_page_cost
cpu_cost=记录数 * 0.1(row_evaluate_cost) + 0.01(代码中的微调参数) + rows(记录数) * 0.1(row_evaluate_cost)
例子:
mysql> set optimizer_trace='enabled=on'; Query OK, 0 rows affected (0.00 sec) mysql>explain select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20; +----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+ | 1 | SIMPLE | t2 | NULL | range | id_num_unique,idx_age,idx_age_id_num | idx_age | 1 | NULL | 9594 | 100.00 | Using index condition | | 1 | SIMPLE | t1 | NULL | eq_ref | id_num_unique,idx_age | id_num_unique | 60 | test.t2.id_num | 1 | 50.00 | Using where | +----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+ 2 rows in set, 1 warning (0.04 sec)
查看optimizer_trace的内容
select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20 | { "steps": [ { "join_preparation": { "select#": 1, "steps": [ { "expanded_query": "/* select#1 */ select `t1`.`id` AS `id`,`t1`.`id_num` AS `id_num`,`t1`.`lastname` AS `lastname`,`t1`.`firstname` AS `firstname`,`t1`.`mobile` AS `mobile`,`t1`.`sex` AS `sex`,`t1`.`birthday` AS `birthday`,`t1`.`age` AS `age`,`t1`.`top_education` AS `top_education`,`t1`.`address` AS `address`,`t1`.`income_by_year` AS `income_by_year`,`t1`.`create_time` AS `create_time`,`t1`.`update_time` AS `update_time`,`t2`.`id` AS `id`,`t2`.`id_num` AS `id_num`,`t2`.`lastname` AS `lastname`,`t2`.`firstname` AS `firstname`,`t2`.`mobile` AS `mobile`,`t2`.`sex` AS `sex`,`t2`.`birthday` AS `birthday`,`t2`.`age` AS `age`,`t2`.`top_education` AS `top_education`,`t2`.`address` AS `address`,`t2`.`income_by_year` AS `income_by_year`,`t2`.`create_time` AS `create_time`,`t2`.`update_time` AS `update_time` from (`basic_person_info` `t1` join `basic_person_info2` `t2` on((`t1`.`id_num` = `t2`.`id_num`))) where ((`t1`.`age` > 10) and (`t2`.`age` < 20))" }, { "transformations_to_nested_joins": { "transformations": [ "JOIN_condition_to_WHERE", "parenthesis_removal" ], "expanded_query": "/* select#1 */ select `t1`.`id` AS `id`,`t1`.`id_num` AS `id_num`,`t1`.`lastname` AS `lastname`,`t1`.`firstname` AS `firstname`,`t1`.`mobile` AS `mobile`,`t1`.`sex` AS `sex`,`t1`.`birthday` AS `birthday`,`t1`.`age` AS `age`,`t1`.`top_education` AS `top_education`,`t1`.`address` AS `address`,`t1`.`income_by_year` AS `income_by_year`,`t1`.`create_time` AS `create_time`,`t1`.`update_time` AS `update_time`,`t2`.`id` AS `id`,`t2`.`id_num` AS `id_num`,`t2`.`lastname` AS `lastname`,`t2`.`firstname` AS `firstname`,`t2`.`mobile` AS `mobile`,`t2`.`sex` AS `sex`,`t2`.`birthday` AS `birthday`,`t2`.`age` AS `age`,`t2`.`top_education` AS `top_education`,`t2`.`address` AS `address`,`t2`.`income_by_year` AS `income_by_year`,`t2`.`create_time` AS `create_time`,`t2`.`update_time` AS `update_time` from `basic_person_info` `t1` join `basic_person_info2` `t2` where ((`t1`.`age` > 10) and (`t2`.`age` < 20) and (`t1`.`id_num` = `t2`.`id_num`))" } } ] } }, { "join_optimization": { "select#": 1, "steps": [ { "condition_processing": { "condition": "WHERE", "original_condition": "((`t1`.`age` > 10) and (`t2`.`age` < 20) and (`t1`.`id_num` = `t2`.`id_num`))", "steps": [ { "transformation": "equality_propagation", "resulting_condition": "((`t1`.`age` > 10) and (`t2`.`age` < 20) and multiple equal(`t1`.`id_num`, `t2`.`id_num`))" }, { "transformation": "constant_propagation", "resulting_condition": "((`t1`.`age` > 10) and (`t2`.`age` < 20) and multiple equal(`t1`.`id_num`, `t2`.`id_num`))" }, { "transformation": "trivial_condition_removal", "resulting_condition": "((`t1`.`age` > 10) and (`t2`.`age` < 20) and multiple equal(`t1`.`id_num`, `t2`.`id_num`))" } ] } }, { "substitute_generated_columns": { } }, { "table_dependencies": [ { "table": "`basic_person_info` `t1`", "row_may_be_null": false, "map_bit": 0, "depends_on_map_bits": [ ] }, { "table": "`basic_person_info2` `t2`", "row_may_be_null": false, "map_bit": 1, "depends_on_map_bits": [ ] } ] }, { "ref_optimizer_key_uses": [ { "table": "`basic_person_info` `t1`", "field": "id_num", "equals": "`t2`.`id_num`", "null_rejecting": true }, { "table": "`basic_person_info2` `t2`", "field": "id_num", "equals": "`t1`.`id_num`", "null_rejecting": true } ] }, { "rows_estimation": [ { "table": "`basic_person_info` `t1`", "range_analysis": { "table_scan": { "rows": 86734, "cost": 8859.75 t1表的scan成本=聚簇索引页数*0.25 + 行数 * 0.1 +1.1+1 737*0.25+1.1+86734*0.1+1=8859.75 }, "potential_range_indexes": [ { "index": "PRIMARY", "usable": false, "cause": "not_applicable" }, { "index": "id_num_unique", "usable": false, "cause": "not_applicable" }, { "index": "mobile_unique", "usable": false, "cause": "not_applicable" }, { "index": "idx_basic_person_info_name", "usable": false, "cause": "not_applicable" }, { "index": "idx_basic_person_info_top_education", "usable": false, "cause": "not_applicable" }, { "index": "idx_basic_person_info_create_time", "usable": false, "cause": "not_applicable" }, { "index": "idx_basic_person_info_mobile", "usable": false, "cause": "not_applicable" }, { "index": "idx_age", "usable": true, "key_parts": [ "age", "id" ] } ], "setup_range_conditions": [ ], "group_index_range": { "chosen": false, "cause": "not_single_table" }, "skip_scan_range": { "chosen": false, "cause": "not_single_table" }, "analyzing_range_alternatives": { "range_scan_alternatives": [ { "index": "idx_age", "ranges": [ "10 < age" ], "index_dives_for_eq_ranges": true, "rowid_ordered": false, "using_mrr": false, "index_only": false, "rows": 43367, "cost": 15178.7, 通过索引idx_age读取数据: io_cost=区间数* 0.25 +记录数* 0.25 io_cost=1*0.25+43367*0.25=10,842 cpu_cost=记录数* 0.1 (没有回表的cost) cpu_cost=43367*0.1=4,336.7 cost=10842+4,336.7=15178.7 "chosen": false, "cause": "cost" } ], "analyzing_roworder_intersect": { "usable": false, "cause": "too_few_roworder_scans" } } } }, { "table": "`basic_person_info2` `t2`", "range_analysis": { "table_scan": { "rows": 73845, "cost": 7538.85 t2表的scan成本=聚簇索引页数*0.25 + 行数 * 0.1 +1.1+1 609*0.25+1+73845*0.1+1.1=7538.85 }, "potential_range_indexes": [ { "index": "PRIMARY", "usable": false, "cause": "not_applicable" }, { "index": "id_num_unique", "usable": false, "cause": "not_applicable" }, { "index": "mobile_unique", "usable": false, "cause": "not_applicable" }, { "index": "idx_basic_person_info_name", "usable": false, "cause": "not_applicable" }, { "index": "idx_basic_person_info_top_education", "usable": false, "cause": "not_applicable" }, { "index": "idx_basic_person_info_create_time", "usable": false, "cause": "not_applicable" }, { "index": "idx_basic_person_info_mobile", "usable": false, "cause": "not_applicable" }, { "index": "idx_age", "usable": true, "key_parts": [ "age", "id" ] }, { "index": "idx_age_id_num", "usable": true, "key_parts": [ "age", "id_num", "id" ] } ], "setup_range_conditions": [ ], "group_index_range": { "chosen": false, "cause": "not_single_table" }, "skip_scan_range": { "chosen": false, "cause": "not_single_table" }, "analyzing_range_alternatives": { "range_scan_alternatives": [ { "index": "idx_age", "ranges": [ "age < 20" ], "index_dives_for_eq_ranges": true, "rowid_ordered": false, "using_mrr": false, "index_only": false, "rows": 9594, "cost": 3358.16, 通过索引idx_age读取数据: io_cost=区间数* 0.25 +记录数* 0.25 io_cost=1*0.25+9594*0.25=2,398.75 cpu_cost=记录数* 0.1 (没有回表的cost) cpu_cost=9594*0.1959.4 cost=2,398.75+959.4=3,358.15 "chosen": true }, { "index": "idx_age_id_num", "ranges": [ "age < 20" ], "index_dives_for_eq_ranges": true, "rowid_ordered": false, "using_mrr": false, "index_only": false, "rows": 19086, "cost": 6680.36, 通过索引idx_age_id_num读取数据: io_cost=区间数* 0.25 +记录数* 0.25 io_cost=1*0.25+19086*0.25=4,771.75 cpu_cost=记录数* 0.1 (没有回表的cost) cpu_cost=19086*0.1=1908.6 cost=4,771.75+1908.6=6,680.35 "chosen": false, "cause": "cost" } ], "analyzing_roworder_intersect": { "usable": false, "cause": "too_few_roworder_scans" } }, "chosen_range_access_summary": { "range_access_plan": { "type": "range_scan", "index": "idx_age", "rows": 9594, "ranges": [ "age < 20" ] }, "rows_for_plan": 9594, "cost_for_plan": 3358.16, "chosen": true } } } ] }, { "considered_execution_plans": [ { "plan_prefix": [ ], "table": "`basic_person_info2` `t2`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", "index": "id_num_unique", "usable": false, "chosen": false }, { "rows_to_scan": 9594, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "range", "range_details": { "used_index": "idx_age" }, "resulting_rows": 9594, "cost": 4317.56, 通过索引idx_age读取数据: io_cost=区间数* 0.25 +记录数* 0.25 io_cost=1*0.25+9594*0.25=2,398.75 cpu_cost=记录数* 0.1 + 记录数* 0.1 cpu_cost=9594*0.1*2=1,918.8 cost=2,398.75+1,918.8=4317.56 "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 9594, "cost_for_plan": 4317.56, "rest_of_plan": [ { "plan_prefix": [ "`basic_person_info2` `t2`" ], "table": "`basic_person_info` `t1`", "best_access_path": { "considered_access_paths": [ { "access_type": "eq_ref", "index": "id_num_unique", "rows": 1, "cost": 3357.9, io_cost=t2表记录数*0.25=9594*0.25=2398.5 cpu_cost=记录数*0.1=9594*0.1=959.4 cost=2398.5+959.4=3357.9 "chosen": true }, { "rows_to_scan": 86734, "filtering_effect": [ ], "final_filtering_effect": 0.5, "access_type": "scan", "using_join_cache": true, "buffers_needed": 14, "resulting_rows": 43367, "cost": 4.16701e+07, "chosen": false } ] }, "condition_filtering_pct": 100, "rows_for_plan": 9594, "cost_for_plan": 7675.46, 总cost=4,317.56+3,357.9=7,675.46 "chosen": true } ] }, { "plan_prefix": [ ], "table": "`basic_person_info` `t1`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", "index": "id_num_unique", "usable": false, "chosen": false }, { "rows_to_scan": 86734, "filtering_effect": [ ], "final_filtering_effect": 0.5, "access_type": "scan", "resulting_rows": 43367, "cost": 8857.65, t1的scan成本 "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 43367, "cost_for_plan": 8857.65, "pruned_by_cost": true 放弃后续的计算 } ] }, { "attaching_conditions_to_tables": { "original_condition": "((`t1`.`id_num` = `t2`.`id_num`) and (`t1`.`age` > 10) and (`t2`.`age` < 20))", "attached_conditions_computation": [ ], "attached_conditions_summary": [ { "table": "`basic_person_info2` `t2`", "attached": "(`t2`.`age` < 20)" }, { "table": "`basic_person_info` `t1`", "attached": "((`t1`.`id_num` = `t2`.`id_num`) and (`t1`.`age` > 10))" } ] } }, { "finalizing_table_conditions": [ { "table": "`basic_person_info2` `t2`", "original_table_condition": "(`t2`.`age` < 20)", "final_table_condition ": "(`t2`.`age` < 20)" }, { "table": "`basic_person_info` `t1`", "original_table_condition": "((`t1`.`id_num` = `t2`.`id_num`) and (`t1`.`age` > 10))", "final_table_condition ": "(`t1`.`age` > 10)" } ] }, { "refine_plan": [ { "table": "`basic_person_info2` `t2`", "pushed_index_condition": "(`t2`.`age` < 20)", "table_condition_attached": null }, { "table": "`basic_person_info` `t1`" } ] } ] } }, { "join_execution": { "select#": 1, "steps": [ ] } } ] }
成本常数修改:
前面已经介绍了成本常量值实际上存放在MySQL自带的系统库MySQL中的server_cost和engine_cost表中,其中server_cost表存放server层的成本常量,engine_cost表存放engine层成本常量
mysql> select * from mysql.server_cost; +------------------------------+------------+---------------------+---------+---------------+ | cost_name | cost_value | last_update | comment | default_value | +------------------------------+------------+---------------------+---------+---------------+ | disk_temptable_create_cost | NULL | 2022-05-11 16:09:37 | NULL | 20 | | disk_temptable_row_cost | NULL | 2022-05-11 16:09:37 | NULL | 0.5 | | key_compare_cost | NULL | 2022-05-11 16:09:37 | NULL | 0.05 | | memory_temptable_create_cost | NULL | 2022-05-11 16:09:37 | NULL | 1 | | memory_temptable_row_cost | NULL | 2022-05-11 16:09:37 | NULL | 0.1 | | row_evaluate_cost | NULL | 2022-05-11 16:09:37 | NULL | 0.1 | +------------------------------+------------+---------------------+---------+---------------+ mysql> select * from mysql.engine_cost; +-------------+-------------+------------------------+------------+---------------------+---------+---------------+ | engine_name | device_type | cost_name | cost_value | last_update | comment | default_value | +-------------+-------------+------------------------+------------+---------------------+---------+---------------+ | default | 0 | io_block_read_cost | NULL | 2022-05-11 16:09:37 | NULL | 1 | | default | 0 | memory_block_read_cost | NULL | 2023-01-09 11:17:39 | NULL | 0.25 | +-------------+-------------+------------------------+------------+---------------------+---------+---------------+
其中 default_value的值是系统默认的,不能修改,cost_value列的值我们可以修改,如果cost_value列的值不为空系统将用该值覆盖默认值,我们可以通过update语句来修改
mysql> update mysql.engine_cost set cost_value=10 where cost_name='memory_block_read_cost'; Query OK, 0 rows affected (0.00 sec) mysql> update mysql.engine_cost set cost_value=10 where cost_name='io_block_read_cost'; Query OK, 0 rows affected (0.00 sec)
很多资料都说执行flush optimizer_costs就可以生效,不过我在修改完后并执行flush optimizer_costs并不能马上生效,最后是通过重启数据库实例才生效,这个可能是数据库版本的差异,大家可以自行验证。
mysql> explain select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20; +----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+-------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+-------+----------+-------------+ | 1 | SIMPLE | t2 | NULL | ALL | id_num_unique,idx_age,idx_age_id_num | NULL | NULL | NULL | 73990 | 12.97 | Using where | | 1 | SIMPLE | t1 | NULL | eq_ref | id_num_unique,idx_age | id_num_unique | 60 | test.t2.id_num | 1 | 50.00 | Using where | +----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+-------+----------+-------------+ "table": "`basic_person_info2` `t2`", "range_analysis": { "table_scan": { "rows": 73990, "cost": 13491.1 全表扫描cost=609*10+73990*0.1+1.1+1= 13491.1 }, "index": "idx_age", "ranges": [ "age < 20" ], "index_dives_for_eq_ranges": true, "rowid_ordered": false, "using_mrr": false, "index_only": false, "rows": 9594, "cost": 96909.4, idx_age索引扫描cost=1*10+9594*10+9594*0.1=96,909.4 "chosen": false, "cause": "cost" },
修改后的执行计划,发现t2表走了全表扫描了而没有走idx_age索引,分别查看一下t2表走全表扫描和idx_age索引的cost发现全表扫描的cost为13491.1,而走索引的cost为96,909.4,因为全表扫描的cost比走索引低,所以优化器没有选择idx_age索引。
从这个例子可以看出,更改成本常量值会直接影响优化器的方案选择,所以一定要慎重,没有特殊原因建议不要修改。
explain format=json
虽然通过optimizer_trace可以看到很多详细的优化器选择过程,但是使用起来起来还是比较麻烦,需要过滤的信息很多,这时explain format=json输出json格式的分析数据也是一个不错的选择,它也包含语句将要执行的成本信息,如下:
query_cost 总查询成本 read_cost IO成本+除 eval_cost以外cpu成本 eval_cost 检测rows * filter条记录的成本 prefix_cost 单次查询的成本,等于read_cost+eval_cost
mysql> explain format=json select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20; { "query_block": { "select_id": 1, "cost_info": { "query_cost": "7675.46" }, "nested_loop": [ { "table": { "table_name": "t2", "access_type": "range", "possible_keys": [ "id_num_unique", "idx_age", "idx_age_id_num" ], "key": "idx_age", "used_key_parts": [ "age" ], "key_length": "1", "rows_examined_per_scan": 9594, "rows_produced_per_join": 9594, "filtered": "100.00", "index_condition": "(`test`.`t2`.`age` < 20)", "cost_info": { "read_cost": "3358.16", 包含所有io成本+(cpu成本-eval_cost) "eval_cost": "959.40", 计算扇出的cpu成本,优化器利用启发式规则估算出满足所有条件的的比例(filtered) =rows_examined_per_scan*filtered*0.1 "prefix_cost": "4317.56", 单表查询的总成本 "data_read_per_join": "3M" }, "used_columns": [ "id", "id_num", "lastname", "firstname", "mobile", "sex", "birthday", "age", "top_education", "address", "income_by_year", "create_time", "update_time" ] } }, { "table": { "table_name": "t1", "access_type": "eq_ref", "possible_keys": [ "id_num_unique", "idx_age" ], "key": "id_num_unique", "used_key_parts": [ "id_num" ], "key_length": "60", "ref": [ "test.t2.id_num" ], "rows_examined_per_scan": 1, "rows_produced_per_join": 4797, "filtered": "50.00", "cost_info": { "read_cost": "2398.50", 包含所有io成本+(cpu成本-eval_cost) "eval_cost": "479.70", 计算扇出的cpu成本,优化器利用启发式规则估算出满足所有条件的的比例(filtered) =rows_examined_per_scan*filtered*0.1 "prefix_cost": "7675.46", 两表查询的总cost "data_read_per_join": "1M" }, "used_columns": [ "id", "id_num", "lastname", "firstname", "mobile", "sex", "birthday", "age", "top_education", "address", "income_by_year", "create_time", "update_time" ], "attached_condition": "(`test`.`t1`.`age` > 10)" } } ] } }
另外,explain结合show warnings语句一起使用还可以得知优化器改写后的语句
mysql> show warnings; +-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Level | Code | Message | +-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Note | 1003 | /* select#1 */ select `test`.`t1`.`id` AS `id`,`test`.`t1`.`id_num` AS `id_num`,`test`.`t1`.`lastname` AS `lastname`,`test`.`t1`.`firstname` AS `firstname`,`test`.`t1`.`mobile` AS `mobile`,`test`.`t1`.`sex` AS `sex`,`test`.`t1`.`birthday` AS `birthday`,`test`.`t1`.`age` AS `age`,`test`.`t1`.`top_education` AS `top_education`,`test`.`t1`.`address` AS `address`,`test`.`t1`.`income_by_year` AS `income_by_year`,`test`.`t1`.`create_time` AS `create_time`,`test`.`t1`.`update_time` AS `update_time`,`test`.`t2`.`id` AS `id`,`test`.`t2`.`id_num` AS `id_num`,`test`.`t2`.`lastname` AS `lastname`,`test`.`t2`.`firstname` AS `firstname`,`test`.`t2`.`mobile` AS `mobile`,`test`.`t2`.`sex` AS `sex`,`test`.`t2`.`birthday` AS `birthday`,`test`.`t2`.`age` AS `age`,`test`.`t2`.`top_education` AS `top_education`,`test`.`t2`.`address` AS `address`,`test`.`t2`.`income_by_year` AS `income_by_year`,`test`.`t2`.`create_time` AS `create_time`,`test`.`t2`.`update_time` AS `update_time` from `test`.`basic_person_info` `t1` join `test`.`basic_person_info2` `t2` where ((`test`.`t1`.`id_num` = `test`.`t2`.`id_num`) and (`test`.`t1`.`age` > 10) and (`test`.`t2`.`age` < 20)) | +-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1 row in set (0.00 sec)
总结:
- MySQL的优化器是基于成本来选择最优执行方案的,哪个成本最少就选哪个,所以重点在于计算出各个执行计划的cost
- 成本由CPU成本和IO成本组成,每个成本常数值可以自己调整,非必要的情况下不要调整,以免影响整个数据库的执行计划选择
- 通过开启optimizer_trace可以跟踪优化器的各个环节的分析步骤,可以判断有时候为什么没有走索引而走了全表扫描
- explain加上format=json选项后可以查看成本信息分为read_cost和eval_cost,但只能看到当前已经选择的执行计划,另外通过show warnings可以看到优化器改写后的语句
EnjoyGreatSQL:)