基于人工鱼群算法实现无人机三维路径规划含Matlab代码

简介: 基于人工鱼群算法实现无人机三维路径规划含Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

随着无人机可执行任务的多样化,航迹规划成为其顺利完成任务的基本前提。针对该问题,提出了基于人工群算法的无人机航迹规划方法。运用等效地形模拟方法,将作战区域中的敌方威胁、地形障碍等效为山峰,构建了无人机航迹规划的场景。以此为基础,采用抽象人工鱼群,对起始点和终点已知的无人机航迹进行规划,规划出的航迹安全地避开了威胁,长度较短,且平均耗时较小。仿真结果验证了该算法的有效性。

1.1 航迹规划问题的描述

无人机航迹规划问题的一般描述为:在给定的存在火力威胁和地形障碍等约束的作战环境中,为无人机从起始点到目标点求解一条可行航迹,该航迹不仅要避开障碍物,确保自身的安全,而且需要满足无人机自身的性能约束。此外,该航迹在某种性能指标的度量下需要达到最优,以保证所付出的代价最小。因此,从本质上讲,无人机航迹规划属于一种寻优问题。无人机航迹规划问题的约束条件可分为两类,一种是复杂作战环境约束,主要有:敌方火力威胁、地形障碍;另一种是无人机自身性能约束,主要有:最大水平转弯角、最大爬升/俯冲角、最小航迹段长度、最长飞行距离和最低飞行高度。该问题的目标函数为无人机的航迹长度达到最短。

1.2 航迹规划问题的模型构建

无人机在复杂作战环境中执行各种任务时,可能会面临敌方火力的威胁,如地空导弹、防空火炮等。目前雷达依然是对目标进行远距离探测、跟踪的主要设备,敌方的防空火力威胁几乎必须依靠雷达才能发挥其威力,故可将敌方的各种威胁简化为雷达威胁区域。无人机在作战区域中遇到的地形障碍,同样可以视为禁飞区域。威胁等效地形模拟方法,是将复杂环境中的威胁与障碍等效处理成山峰地形,已在多个文献中得到应用。它通过把敌方威胁处理成特殊的地形,其位置和作用范围叠加到数字地图上,威胁的作用就等同于抬高该作用范围的地形。经过这样处理后,无人机飞行区域内已知的地形障碍和敌方威胁融合成了综合的地形信息,而且把敌方威胁回避等效为地形回避进行处理,使航迹规划问题得到大大简化。根据该等效方法,本文对作战环境中的敌方威胁和地形障碍进行建模,可得威胁等效地形数学模型:

⛄ 部分代码

function plotFigure(startPos,goalPos,X,Y,Z, GlobalBest)


% 画起点和终点

scatter3(startPos(1), startPos(2), startPos(3),100,'bs','MarkerFaceColor','y')

hold on

scatter3(goalPos(1), goalPos(2), goalPos(3),100,'kp','MarkerFaceColor','y')


% 画山峰曲面

surf(X,Y,Z)      % 画曲面图

shading flat     % 各小曲面之间不要网格


% 画路径

path = GlobalBest.path;

pos = GlobalBest.pos;

scatter3(pos.x, pos.y, pos.z, 'go');

plot3(path(:,1), path(:,2),path(:,3), 'r','LineWidth',2);


hold off

grid on


⛄ 运行结果

⛄ 参考文献

[1] 张洛兵, 徐流沙, 吴梅. 基于改进人工蜂群算法的无人机实时航迹规划[J]. 飞行力学, 2015(1):6.

[2] 王庆海, 刘广瑞, 郭珂甫,等. 基于改进人工蜂群算法的无人机航迹规划研究[J]. 机床与液压, 2017, 45(21):5.

[3] 来佳音, 赵泳成. 基于改进蚁群算法的无人机三维路径规划研究[J]. 信息记录材料, 2020.

[4] 罗文平, 刘维勤, 王红旭,等. 基于人工蜂群算法和有限元强度计算的集装箱船剖面结构优化[J]. 中国舰船研究, 2023, 18(2):160-167, 217.

[5] 肖振宇, 杨福廷, 董航. 基于人工蜂群算法的多无人机三维编队重构方法:, CN109669475A[P]. 2019.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关文章
|
4天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于sift变换的农田杂草匹配定位算法matlab仿真
本项目基于SIFT算法实现农田杂草精准识别与定位,运行环境为Matlab2022a。完整程序无水印,提供详细中文注释及操作视频。核心步骤包括尺度空间极值检测、关键点定位、方向分配和特征描述符生成。该算法通过特征匹配实现杂草定位,适用于现代农业中的自动化防控。
|
2天前
|
机器学习/深度学习 资源调度 算法
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
|
7月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
285 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
7月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
170 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
7月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
151 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
10月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
10月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
10月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)