IBM宣布语音识别错误率接近人类水平

简介:

3月10日消息,据IBM官网报道,人们在说话时,对方每听20个单词都会漏掉或听错1-2个单词。在5分钟的对话中,可能会听错80个单词。但我们多数人在听懂说话上没有问题。然而,电脑就不一样了。

去年,IBM宣布在自然对话环境中的语音识别上取得重大成就:开发出单词错误率为6.9%的系统。此后,该公司不断取得进步。现在IBM宣布创造新的业界纪录:5.5%的错误率。这是对非常困难的语音识别任务:纪录人与人之间日常对话如“买汽车”,计算出来的结果。这种纪录的语料库被称为“SWITCHBOARD”,20多年来一直用于检验语音识别系统。

IBM研究人员在实现这个突破时,专注于应用深度学习技术,将LSTM(长短期记忆)和WaveNet语言模型与三个强大的声学模型结合起来。在被使用的3个声学模型中,前2个为双向6层LSTM,其中一个为多特征输入,另一个有对话多任务学习能力。最后一个模型有个独特的地方,其不仅能从积极的例子中学习,也能利用消极的例子,因此会变得越来越聪明,在重复出现类似说话风格时表现更好。

实现人类同等水准——错误率与2个人说话相当——长期以来都是行业的终极目标。行业里的其他人也在努力追赶IBM的纪录,一些人最近声称达到5.9%。在达到今天的成就过程中,IBM发现人类同等水准应该是错误率为5.1%。在确定这个数字上,IBM与合作伙伴Appen合作再现人类水平的结果。虽然IBM实现了5.5%的错误率是一次大的突破,但发现人类同等水准是5.1%证明科技要达到与人类相同水平还有一段距离。

在研究中,IBM联系了不同的行业专家,让他们对此事发表意见。蒙特利尔大学MILA实验室的主任Yoshua Bengio认同IBM还有很多工作要做才能实现人类同等水准。IBM意识到,发现人类同等水准的标准比原先想象更复杂。除了SWITCHBOARD外,还有另一个行业语料库CallHome,提供了不同的可测试的语音数据集。

本文转自d1net(转载)

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
目录
相关文章
|
Linux 语音技术 应用服务中间件
|
应用服务中间件 Apache 语音技术
|
6月前
|
机器学习/深度学习 自然语言处理 算法
未来语音交互新纪元:FunAudioLLM技术揭秘与深度评测
人类自古以来便致力于研究自身并尝试模仿,早在2000多年前的《列子·汤问》中,便记载了巧匠们创造出能言善舞的类人机器人的传说。
12468 116
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
2月前
|
机器学习/深度学习 自然语言处理 搜索推荐
智能语音交互技术:构建未来人机沟通新桥梁####
【10月更文挑战第28天】 本文深入探讨了智能语音交互技术的发展历程、当前主要技术框架、核心算法原理及其在多个领域的应用实例,旨在为读者提供一个关于该技术全面而深入的理解。通过分析其面临的挑战与未来发展趋势,本文还展望了智能语音交互技术如何继续推动人机交互方式的革新,以及它在未来社会中的潜在影响。 ####
154 0
|
2月前
|
机器学习/深度学习 搜索推荐 人机交互
智能语音交互技术的突破与未来展望###
【10月更文挑战第27天】 本文聚焦于智能语音交互技术的最新进展,探讨了其从早期简单命令识别到如今复杂语境理解与多轮对话能力的跨越式发展。通过深入分析当前技术瓶颈、创新解决方案及未来趋势,本文旨在为读者描绘一幅智能语音技术引领人机交互新纪元的蓝图。 ###
108 0