AIGC背后的技术分析 | 通过EBG学习概念cup

简介: 基于解释的学习(explanation-basedlearning)可简称为解释学习,是20世纪80年代中期开始兴起的一种机器学习方法。解释学习根据任务所在领域知识和正在学习的概念知识,对当前实例进行分析和求解,得出一个表征求解过程的因果解释树,以获取新的知识。在获取新知识的过程中,通过对属性、表征现象和内在关系等进行解释而学习到新的知识。

640.jpg


# 01、解释学习过程和算法
解释学习一般包括下列3个步骤。

(1) 利用基于解释的方法对训练实例进行分析与解释,以说明它是目标概念的一个实例。

(2) 对实例的结构进行概括性解释,建立该训练实例的一个解释结构,以满足所学概 念的定义;解释结构的各个叶子结点应符合可操作性准则,且使这种解释比最初的例子适用于更大的一类例子。

(3) 从解释结构中识别出训练实例的特性,并从中得到更大一类例子的概括性描述,获取一般控制知识。

解释学习是把现有的不能用或不实用的知识转化为可用的形式,因此必须了解目标概念的初始描述。

1986年,Mitchell等人为基于解释的学习提出了基于解释的概括 (Explanation-BasedGeneralization,EBG)算法,该算法建立了基于解释的概括过程,并运用知识的逻辑表示和演绎推理进行问题求解。

EBG 过程如图1所示,其求解问题的形式可描述如下。

640.png


图1 EBG过程

给定:

(1) 目标概念(要学习的概念)(GoalConcept,TC)描述。

(2) 训练实例(目标概念的一个实)(TrainingExample,TE)。

(3) 领域知识(由一组规则和事实组成的用于解释训练实例的知识库)(Domain Theory,DT)。

(4) 可操作性准则 (说明概念描述应具有的形式化谓词公式)(Operationality Criterion,OC)
求解:

训练实例的一般化概括,使之满足:

(1) 目标概念的充分概括描述 TC。

(2) 可操作性准则 OC。

其中,领域知识(DT)是相关领域的事实和规则,在学习系统中作为背景知识,用于证明训练实例(TE)为什么可以作为目标概念的一个实例,从而形成相应的解释。

TE 是为学习系统提供的一个例子,在学习过程中起着重要的作用,它应能充分地说明 TC。

操作准则 (OC)用于指导学习系统对目标概念进行取舍,使得通过学习产生的关于 TC的一般性描述成为可用的一般性知识。

从上述描述中可以看出,在解释学习中,为了对某一目标概念进行学习,从而得到相 应的知识,必须为学习系统提供完善的领域知识以及能够说明目标概念的一个训练实例。

在系统进行学习时,首先运用 DT 找出 TE为什么是 TC之实例的证明(即解释),然后根据 OC对证明进行推广。从而得到关于 TC的一般性描述。即可供以后使用的形式化表示的一般性知识。

可把 EBG 算法分为解释和概括两步。

(1) 解释,即根据领域知识建立一个解释,以证明训练实例如何满足目标概念定义。目标概念的初始描述通常是不可操作的。

(2) 概括,即对第(1)步的证明树进行处理,对目标概念进行回归,包括用变量代替常量以及必要的新项合成等工作,从而得到所期望的概念描述。

由上可知,解释工作是将实例的相关属性与无关属性分离开;概括工作则是分析解释结果。

02、案例:通过EBG学习概念cup

下面以学习概念cup(杯子)为例说明 EBG(基于解释的概括方法)的学习过程。

(1) 目标概念:cup。

(2) 高级描述:cup(x)。

(3) 领域知识:
stable(x)∧liftable(x)∧drinkfrom(x)→cup(x)
has(x,y)∧concavity(y)∧upward-pointing(y)→drinkfrom(x)
bottom(x,y)∧flat(y)→stable(x) light-weight(x)∧graspable(x)→liftable(x)
small(x)∧madefrom(x,plastic)→light-weight(x) has(x,y)∧handle(y)→graspable(x)
(部分中文解释:stable稳定的;liftable 便于拿起;drinkfrom 可用来喝饮料;concavity凹空;upward-pointing 向上指示;bottom 底;flat平坦的;light-weight轻质;graspable可握住;plastic塑胶。)
(4) 训练例子:
small(obj),madefrom(obj,plastic),has(obj,part1),handle(part1),has(obj,part2),concavity(part2),upward-pointing(part2),bottom(obj,b),flat(b)。

(5) 可操作性准则:目标概念必须以系统可识别的物理特征描述。

利用以上规则和事实,以cup(obj)为目标逆向推理,可以构造如图7-11(a)所示的解释结构,其叶子结点满足可操作性准则。

对解释进行概括,变常量为变量,便得到概括后的解释结构。

将此结构中的所有叶子结点作合取,就得到目标概念应满足的一般性的充分条件,以产生式规则形式表示为

IF small(V3)∧made-from(V3,plastic)∧
has(V3,V10)∧handle(V10)∧has(V3,V25) ∧
concavity(V25)∧upward-pointing(V25)∧
bottom(V3,V37)∧flat(V37)
THEN cup(V3)……(图7-11(b))
学到这条规则就是 EBG 的目的。

640.png


(a)解释结构


640.png


(b)形成规则

图2 EBG的学习过程

目录
相关文章
|
1月前
|
搜索推荐
师资培训|AIGC在高校教学中的应用场景与案例分析-某产教科技公司
北京新大陆时代科技有限公司举办新一代信息技术名家大讲坛系列培训,旨在提升教师专业素质,加强“双师型”教师队伍建设。TsingtaoAI作为培训伙伴,提供全面支持。培训涵盖AIGC在高校教学的应用场景、教案生成及个性化教学资源定制等内容,助力提升教学质量与人才培养。
77 0
|
12天前
|
人工智能 自然语言处理 数据可视化
什么是AIGC?如何使用AIGC技术辅助办公?
2分钟了解AIGC技术及其如何提高日常办公效率!
53 4
什么是AIGC?如何使用AIGC技术辅助办公?
|
1月前
|
人工智能 自然语言处理 数据挖掘
Claude 3.5:一场AI技术的惊艳飞跃 | AIGC
在这个科技日新月异的时代,人工智能(AI)的进步令人惊叹。博主体验了Claude 3.5 Sonnet的最新功能,对其卓越的性能、强大的内容创作与理解能力、创新的Artifacts功能、视觉理解与文本转录能力、革命性的“computeruse”功能、广泛的应用场景与兼容性以及成本效益和易用性深感震撼。这篇介绍将带你一窥其技术前沿的魅力。【10月更文挑战第12天】
65 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AIGC的底层技术:人工智能通用计算架构
探索AIGC的底层技术:人工智能通用计算架构
115 3
|
1月前
|
人工智能 自然语言处理 搜索推荐
超越边界:探索2023年AIGC技术盛宴,预测前沿科技的奇迹 🚀
本文探讨了互联网内容生产从PGC、UGC到AIGC的演变,特别关注了AIGC(人工智能生成内容)的发展及其对未来内容生产的深远影响。文章详细介绍了AIGC的定义、技术进展(如生成算法、多模态技术、AI芯片等),并展示了AIGC在多个领域的广泛应用,如代码生成、智能编程、个性化服务等。未来,AIGC将在各行各业创造巨大价值,推动社会进入更加智能化的时代。同时,文章也探讨了AIGC对开发者的影响,以及其可能无法完全取代人类的原因,强调开发者可以利用AIGC提升工作效率。
41 0
|
1月前
|
机器学习/深度学习 自然语言处理 Go
Python与Go在AIGC领域的应用:比较与分析
Python与Go在AIGC领域的应用:比较与分析
43 0
|
3月前
|
机器学习/深度学习 数据采集 人工智能
作为AIGC技术的一种应用-bard
8月更文挑战第22天
65 15
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
|
3月前
|
人工智能
AIGC图生视频技术下的巴黎奥运高光时刻
图生视频,Powered By「 阿里云视频云 」
135 4
|
3月前
|
传感器 人工智能 供应链
制造业的未来:AIGC及其他先进技术
制造业的未来:AIGC及其他先进技术
下一篇
无影云桌面