计网 - HTTP 协议_强制缓存和协商缓存的区别

简介: 计网 - HTTP 协议_强制缓存和协商缓存的区别

20210702225354984.jpg


Pre


超文本传输协议(HyperText Transfer Protocol,HTTP)是目前使用最广泛的应用层协议。在网站、App、开放接口中都可以看到它。HTTP 协议设计非常简单,但是涵盖的内容很多。


1990 年蒂姆·伯纳斯·李开发了第一个浏览器,书写了第一个 Web 服务器程序和第一张网页。网页用的语言后来被称作超文本标记语言(HTML),而在服务器和客户端之间传输网页的时候,伯纳斯·李没有直接使用传输层协议,而是在 TCP 的基础上构造了一个应用层协议,这个就是超文本传输协议 HTTP。


万维网(World Wide Web, WWW)是伯纳斯·李对这一系列发明,包括 Web 服务、HTTP 协议、HTML 语言等一个体系的综合。


请求响应和长连接


HTTP 协议采用请求/返回模型。客户端(通常是浏览器)发起 HTTP 请求,然后 Web 服务端收到请求后将数据回传。


HTTP 的请求和响应都是文本,你可以简单认为 HTTP 协议利用 TCP 协议传输文本。当用户想要看一张网页的时候,就发送一个文本请求到 Web 服务器,Web 服务器解析了这段文本,然后给浏览器将网页回传。


那么这里有一个问题,是不是每次发送一个请求,都建立一个 TCP 连接呢? 当然不能这样,为了节省握手、挥手的时间。当浏览器发送一个请求到 Web 服务器的时候,Web 服务器内部就设置一个定时器。在一定范围的时间内,如果客户端继续发送请求,那么服务器就会重置定时器。如果在一定范围的时间内,服务器没有收到请求,就会将连接断开。这样既防止浪费握手、挥手的资源,同时又避免一个连接占用时间过长无法回收导致内存使用效率下降。


这个能力可以利用 HTTP 协议头进行配置,比如下面这条请求头:

Keep-Alive: timeout=5s


会告诉 Web 服务器连接的持续时间是 5s,如果 5s 内没有请求,那么连接就会断开


HTTP 2.0 的多路复用


Keep-Alive 并不是伯纳斯·李设计 HTTP 协议时就有的能力。伯纳斯·李设计的第一版 HTTP 协议是 0.9 版,后来随着协议逐渐完善,有了 1.0 版。而 Keep-Alive 是 HTTP 1.1 版增加的功能,目的是应对越来越复杂的网页资源加载。从 HTTP 协议诞生以来,网页中需要的资源越来越丰富,打开一张页面需要发送的请求越来越多,于是就产生了 Keep-Alive 的设计。


同样,当一个网站需要加载的资源较多时,浏览器会尝试并发发送请求(利用多线程技术)。浏览器会限制同时发送并发请求的数量,通常是 6 个,这样做一方面是对用户本地体验的一种保护,防止浏览器抢占太多网络资源;另一方面也是对站点服务的保护,防止瞬时流量过大。


在 HTTP 2.0 之后,增加了多路复用能力。和 RPC 框架时提到的多路复用类似,请求、返回会被拆分成切片,然后混合传输。这样请求、返回之间就不会阻塞。你可以思考,对于一个 TCP 连接,在 HTTP 1.1 的 Keep-Alive 设计中,第二个请求,必须等待第一个请求返回。如果第一个请求阻塞了,那么后续所有的请求都会阻塞。而 HTTP 2.0 的多路复用,将请求返回都切分成小片,这样利用同一个连接,请求相当于并行的发出,互相之间不会有干扰。


HTTP 方法和 RestFul 架构


伴随着 HTTP 发展,也诞生了一些著名的架构,比如 RestFul。在面试中,经常会遇到 RestFul,RestFul 是 3 个单词的合并缩写:

  • Re(Representational)
  • st(State)
  • Ful(Transfer)


这个命名非常有趣,让我联想到 grep 命令的命名,global regular pattern match。这是一种非常高端的命名技巧,提取词汇中的一个部分组合成为一个读起来朗朗上口的新词汇,建议在实战命名的时候也可以考虑试试。


在 RestFul 架构中,状态仅仅存在于服务端,前端无状态


状态(State)可以理解为业务的状态,这个状态是由服务端管理的。这个无状态和服务端目前倡导的无状态设计不冲突,现在服务端倡导的无状态设计指的是容器内的服务没有状态,状态全部存到合适的存储中去。所以 Restful 中的 State,是服务端状态。


前端(浏览器、应用等)没有业务状态,却又要展示内容,因此前端拥有的是状态的表示,也就是 Representation


比如一个订单,状态存在服务端(数据库中),前端展示订单只需要部分信息,不需要全部信息。前端只需要展示数据,展示数据需要服务端提供。所以服务端提供的不是状态,而是状态的表示。


前端没有状态,当用户想要改变订单状态的时候,比如支付,这个时候前端就向服务端提交表单,然后服务端触发状态的变化。这个过程我们称为转化(Transfer)。从这个角度来看,Restful 讲的是一套前端无状态、服务端管理状态,中间设计转化途径(请求、函数等)的架构方法。这个方法可以让前后端职责清晰,前端负责渲染, 服务端负责业务。前端不需要业务状态,只需要展示。服务端除了关心状态,还要提供状态的转换接口。


HTTP 方法


在 Restful 架构中,除了约定了上述整体架构方案之外,还约束了一些实现细节,比如用名词性的接口和 HTTP 方法来设计服务端提供的接口。


我们用 GET 获取数据,或者进行查询。比如下面这个例子,就是在获取 id 为 123 的订单数据:

GET /order/123


GET 是 HTTP 方法,/order 是一种名词性质的命名。这样设计语义非常清晰,这个接口是获取订单的数据(也就是订单的 Representation 用的)。


对于更新数据的场景,按照 HTTP 协议的约定,PUT 是一种幂等的更新行为,POST 是一种非幂等的更新行为。举个例子:

PUT /order/123 
{...订单数据}

上面我们用 PUT 更新订单,如果订单 123 还没有创建,那么这个接口会创建订单。如果 123 已经存在,那么这个接口会更新订单 123 的数据。为什么是这样?因为 PUT 代表幂等,对于一个幂等的接口,请求多少遍最终的状态是一致的,也就是说操作的都是同一笔订单。


如果换成用 POST 更新订单:

POST /order
{...订单数据}


POST 代表非幂等的设计,像上面这种用 POST 提交表单的接口,调用多次往往会产生多个订单。也就是非幂等的设计每次调用结束后都会产生新的状态。

另外在 HTTP 协议中,还约定了 DELETE 方法用于删除数据。其实还有几个方法, 比如 OPTIONS、PATCH等等。


缓存

在 HTTP 的使用中,我们经常会遇到两种缓存,强制缓存和协商缓存,接下来举两个场景来说明。


强制缓存


举个例子: 公司用版本号管理某个对外提供的 JS 文件。比如说 libgo.1.2.3.js,就是 libgo 的 1.2.3 版本。其中 1 是主版本,2 是副版本,3 是补丁编号。每次你们有任何改动,都会更新 libgo 版本号。在这种情况下,当浏览器请求了一次 libgo.1.2.3.js 文件之后,还需要再请求一次吗?


整理下我们的需求,浏览器在第一次进行了GET /libgo.1.2.3.js这个操作后,如果后续某个网页还用到了这个文件(libgo.1.2.3.js),我们不再发送第二次请求。这个方案要求浏览器将文件缓存到本地,并且设置这个文件的失效时间(或者永久有效)。这种请求过一次不需要再次发送请求的缓存模式,在 HTTP 协议中称为强制缓存。当一个文件被强制缓存后,下一次请求会直接使用本地版本,而不会真的发出去。


使用强制缓存时要注意,千万别把需要动态更新的数据强制缓存。一个负面例子就是小明把获取用户信息数据的接口设置为强制缓存,导致用户更新了自己的信息后,一直要等到强制缓存失效才能看到这次更新。


协商缓存


我们再说一个场景:小明开发了一个接口,这个接口提供全国省市区的 3 级信息。先问你一个问题,这个场景可以用强制缓存吗?小明一开始觉得强制缓存可以,然后突然有一天接到运营的通知,某市下属的两个县合并了,需要调整接口数据。小明错手不急,更新了接口数据,但是数据要等到强制缓存失效。


为了应对这种场景,HTTP 协议还设计了协商缓存。协商缓存启用后,第一次获取接口数据,会将数据缓存到本地,并存储下数据的摘要。第二次请求时,浏览器检查到本地有缓存,将摘要发送给服务端。服务端会检查服务端数据的摘要和浏览器发送来的是否一致。如果不一致,说明服务端数据发生了更新,服务端会回传全部数据。如果一致,说明数据没有更新,服务端不需要回传数据。


从这个角度看,协商缓存的方式节省了流量。对于小明开发的这个接口,多数情况下协商缓存会生效。当小明更新了数据后,协商缓存失效,客户端数据可以马上更新。和强制缓存相比,协商缓存的代价是需要多发一次请求。


总结


目前 HTTP 协议已经发展到了 2.0 版本,不少网站都更新到了 HTTP 2.0。大部分浏览器、CDN 也支持了 HTTP 2.0。 可以自行查阅更多关于 HTTP 2.0 解决队头阻塞、HPack 压缩算法、Server Push 等资料。


另外 HTTP 3.0 协议也在建设当中,HTTP 3.0 对 HTTP 2.0 兼容,主要调整发生在网络底层。HTTP 3.0 开始采用 UDP 协议,并在 UDP 协议之上,根据 HTTP 协议的需求特性,研发了网络层、应用层去解决可靠性等问题。

相关文章
|
3月前
|
缓存 安全 网络协议
HTTP和HTTPS的区别有哪些?
本文简要总结了 HTTP 和 HTTPS 的区别,从概念、端口、连接方式、使用场景、安全性等多个角度进行了对比。HTTP 是无状态的、无连接的应用层协议,适用于一般性网站和性能要求较高的应用;HTTPS 则通过 SSL/TLS 层提供加密、认证和完整性保护,适用于涉及敏感信息和高安全性的场景。文章还讨论了两者在性能上的差异,包括握手和加密开销、缓存效果以及 HTTP/2 的多路复用技术。最终,根据具体需求选择合适的协议能够更好地平衡安全性和性能。
546 2
HTTP和HTTPS的区别有哪些?
|
18天前
|
安全 算法 网络安全
HTTP和HTTPS的区别
本文介绍HTTP与HTTPS的区别、HTTPS链接建立过程及常见加密算法。HTTP为明文传输,易被窃听;HTTPS通过SSL/TLS协议加密,确保数据安全。HTTPS使用端口443,提供认证机制。文中还详细讲解了对称加密(如AES、DES)和非对称加密(如RSA、ECC)算法的特点及应用场景。
|
18天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
74 1
|
2月前
|
安全 搜索推荐 网络安全
HTTPS协议是**一种通过计算机网络进行安全通信的传输协议
HTTPS协议是**一种通过计算机网络进行安全通信的传输协议
77 11
|
2月前
|
缓存 安全 网络协议
HTTPS协议的历史发展
HTTPS协议的历史发展
51 8
|
2月前
|
安全 应用服务中间件 Linux
判断一个网站是否使用HTTPS协议
判断一个网站是否使用HTTPS协议
146 4
|
24天前
|
安全 网络安全 数据安全/隐私保护
第六问:http和https区别与联系
HTTP 和 HTTPS 是现代网络通信中的两种重要协议。HTTP 是明文传输协议,无加密功能;HTTPS 在 HTTP 基础上加入 SSL/TLS 加密层,提供数据加密、身份验证和数据完整性保障。HTTP 适用于非敏感信息传输,如新闻网站;HTTPS 适用于在线支付、账户登录等需要保护用户数据的场景。
39 0
|
2月前
|
传感器 缓存 网络协议
CoAP 协议与 HTTP 协议的区别
CoAP(Constrained Application Protocol)协议是为资源受限的设备设计的轻量级协议,适用于物联网场景。相比HTTP,CoAP具有低功耗、低带宽占用和简单易实现的特点,支持多播通信和无连接的交互模式。
|
2月前
|
存储 缓存 网络协议
计算机网络常见面试题(二):浏览器中输入URL返回页面过程、HTTP协议特点,GET、POST的区别,Cookie与Session
计算机网络常见面试题(二):浏览器中输入URL返回页面过程、HTTP协议特点、状态码、报文格式,GET、POST的区别,DNS的解析过程、数字证书、Cookie与Session,对称加密和非对称加密
|
2月前
|
缓存 安全 API
http 的 get 和 post 区别 1000字
【10月更文挑战第27天】GET和POST方法各有特点,在实际应用中需要根据具体的业务需求和场景选择合适的请求方法,以确保数据的安全传输和正确处理。