带你读《云原生架构白皮书2022新版》——云原生架构成熟度模型

简介: 带你读《云原生架构白皮书2022新版》——云原生架构成熟度模型

云原生架构成熟度模型


image.png

相关文章
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
388 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
5月前
|
运维 监控 Cloud Native
从本土到全球,云原生架构护航灵犀互娱游戏出海
本文内容整理自「 2025 中企出海大会·游戏与互娱出海分论坛」,灵犀互娱基础架构负责人朱晓靖的演讲内容,从技术层面分享云原生架构护航灵犀互娱游戏出海经验。
526 16
|
5月前
|
机器学习/深度学习 人工智能 监控
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
大型动作模型(LAMs)作为人工智能新架构,融合神经网络与符号逻辑,实现企业重复任务的自动化处理。通过神经符号集成、动作执行管道、模式学习、任务分解等核心技术,系统可高效解析用户意图并执行复杂操作,显著提升企业运营效率并降低人工成本。其自适应学习能力与上下文感知机制,使自动化流程更智能、灵活,为企业数字化转型提供坚实支撑。
385 0
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
|
5月前
|
运维 监控 Cloud Native
从本土到全球,云原生架构护航灵犀互娱游戏出海
内容整理自「 2025 中企出海大会·游戏与互娱出海分论坛」,灵犀互娱基础架构负责人朱晓靖的演讲内容,从技术层面分享云原生架构护航灵犀互娱游戏出海经验。
|
3月前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路
|
4月前
|
数据采集 机器学习/深度学习 搜索推荐
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
MIT与丰田研究院研究发现,扩散模型的“局部性”并非源于网络架构的精巧设计,而是自然图像统计规律的产物。通过线性模型仅学习像素相关性,即可复现U-Net般的局部敏感模式,揭示数据本身蕴含生成“魔法”。
215 3
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
|
3月前
|
Java Linux 虚拟化
【Docker】(1)Docker的概述与架构,手把手带你安装Docker,云原生路上不可缺少的一门技术!
1. Docker简介 1.1 Docker是什么 为什么docker会出现? 假定您在开发一款平台项目,您的开发环境具有特定的配置。其他开发人员身处的环境配置也各有不同。 您正在开发的应用依赖于您当前的配置且还要依赖于某些配置文件。 您的企业还拥有标准化的测试和生产环境,且具有自身的配置和一系列支持文件。 **要求:**希望尽可能多在本地模拟这些环境而不产生重新创建服务器环境的开销 问题: 要如何确保应用能够在这些环境中运行和通过质量检测? 在部署过程中不出现令人头疼的版本、配置问题 无需重新编写代码和进行故障修复
398 2
|
3月前
|
人工智能 Kubernetes Cloud Native
Higress(云原生AI网关) 架构学习指南
Higress 架构学习指南 🚀写在前面: 嘿,欢迎你来到 Higress 的学习之旅!
854 0
|
3月前
|
机器学习/深度学习 存储 缓存
115_LLM基础模型架构设计:从Transformer到稀疏注意力
大型语言模型(LLM)的架构设计是其性能的核心决定因素。从2017年Transformer架构的提出,到如今的稀疏注意力和混合专家模型,LLM架构经历了快速的演进。本文将全面探讨LLM基础架构的设计原理,深入分析Transformer的核心机制,详细介绍稀疏注意力、MoE等创新架构,并展望未来架构发展方向。通过数学推导和实践案例,为构建高效、强大的LLM提供全面指导。
|
3月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。