CF706C Hard problem

简介: CF706C Hard problem

考虑到n的范围问题,是10^5次方,那么只能用空间时间为n或者nlogn的方法


现在面对一个单词就有两个决策,要么反转它,要么不反转。所以很轻易地就想到了二维dp。


用 dp[i][0] 表示不反转第i个单词 而且能使1~i这i个单词按照字典序排列的 最小消费


用 dp[i][0] 表示反转第i个单词 而且能使1~i这i个单词按照字典序排列的 最小消费


值得关注的是,为了方便操作,降低常数复杂度,可以先预处理反转后的字符串

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 4;
typedef long long ll;
const ll inf = 1e18;
ll dp[maxn][2];
int a[maxn];
string str[maxn], rev[maxn];
int main() {
  memset(dp, 0, sizeof(dp));
  int n;
  cin >> n;
  for (int i = 1; i <= n; i++) {
    cin >> a[i];
  }
  for (int i = 1; i <= n; i++) dp[i][0] = dp[i][1] = inf;
  dp[1][0] = 0; dp[1][1] = a[1];
  for (int i = 1; i <= n; i++) {
    cin >> str[i];
    rev[i] = str[i];
    reverse(rev[i].begin(), rev[i].end());
  }
        //dp[i][0] 表示当前位置不翻转
        //dp[i][1] 表示当前位置翻转
  for (int i = 2; i <= n; i++) {
    if (str[i - 1] <= str[i]) { 
      dp[i][0] = min(dp[i][0], dp[i - 1][0]);
    } 
    if (rev[i - 1] <= str[i]) {
      dp[i][0] = min(dp[i][0], dp[i - 1][1]);
    }
    if (str[i - 1] <= rev[i]) {
      dp[i][1] = min(dp[i][1], dp[i - 1][0] + a[i]);
    }
    if (rev[i - 1] <= rev[i]) {
      dp[i][1] = min(dp[i][1], dp[i - 1][1] + a[i]);
    }
  }
  if (min(dp[n][0], dp[n][1]) >= inf) {
    cout << "-1" << endl; return 0;
  } else {
    cout << min(dp[n][0], dp[n][1]) << endl;
  }
  return 0;
}
相关文章
[USACO 2021.02 Feb]Problem 3. Clockwise Fence
[USACO 2021.02 Feb]Problem 3. Clockwise Fence
CF1550B Maximum Cost Deletion(分段比较)
CF1550B Maximum Cost Deletion(分段比较)
46 0
Data Structures and Algorithms (English) - 7-11 Saving James Bond - Hard Version(30 分)
Data Structures and Algorithms (English) - 7-11 Saving James Bond - Hard Version(30 分)
180 0
|
供应链
PAT (Advanced Level) Practice - 1079 Total Sales of Supply Chain(25 分)
PAT (Advanced Level) Practice - 1079 Total Sales of Supply Chain(25 分)
144 0
|
机器学习/深度学习 人工智能 BI