【云计算架构】通过新的优化视角查看云架构

简介: 【云计算架构】通过新的优化视角查看云架构

仅仅让云部署工作不再是目标。关注构建和部署最佳解决方案的新指标和方法

随着云计算架构的成熟,我们定义成功的方式也应该成熟。在2021,我指出,优化云计算更多的是二进制过程,而不是模拟过程。

我当时所说的仍然是正确的:“这关系到很多问题。未充分优化且成本高昂的架构(云架构)也许确实有效,但它们可能会导致企业每周损失数百万美元,而大多数人对此一无所知。30种技术被用于12种可能更好的技术,而不为改变而设计意味着业务敏捷性受到影响。”

为什么大多数云架构都没有得到很好的优化?在规划和设计阶段,大多数云架构师都会按照云架构课程中教给他们的内容来做,或者他们会将所读内容应用到大量的“如何云”参考资料中,或者他们甚至会采纳从以前的云架构项目和导师那里学到的技巧。所有这些都将引导架构师使用一系列通用参考模型、流程和技术堆栈,这些模型、流程和技术堆栈应该进行修改,以满足企业独特的业务需求。这种方法始终导致未充分优化的架构,这会给企业带来更多(或更多)的成本。发生什么事了?

要回答这个问题,让我们后退一步。优化的云架构实际上意味着什么?我在2020年10月定义了云架构优化的过程,并包括了一个要利用的高级模型。我甚至扩展了我的云架构课程,加入了这个概念,这个概念很快将在这里发布。

其次,我们需要认识到,过去的主要重点是让所有东西协同工作,而很少考虑它的工作效果如何或解决方案变得多么复杂。衡量成功的标准是“它有效吗?”不是“它工作得怎么样?”

在开发过程中,团队专注于云架构、迁移和网络新开发的方法,包括广域(元云架构)和窄域(微云架构)。现在,更多的是关于如何设计和部署云迁移和新的云本地开发,或者如何利用容器、无服务器或其他小型或大型云计算解决方案。相反,关键在于如何定义解决方案的目标。

IT和企业管理层普遍认识到,一个“有效”或“似乎具有创新性”的解决方案并不能真正告诉您为什么运营成本比预测成本高很多。今天,我们需要审核和评估云解决方案的最终状态,以明确衡量其成功与否。云部署的规划和开发阶段是规划和构建审计和评估程序的好地方,这些程序将在开发后进行,以衡量项目的总体ROI。

这种从端到端的观点将对构建和部署云及云相关解决方案的人造成一些干扰。大多数人相信他们的设计和构建都是最前沿的,并且采用了当时最好的解决方案。他们相信他们的设计是尽可能优化的。在大多数情况下,他们是错的。

过去10年中实施的大多数云解决方案都严重优化不足。如此之多,以至于如果公司对部署的内容和应该部署的内容进行诚实的审计,一个真正优化的云解决方案的完全不同的图景就会形成。也许容器的使用太多或不够。或者没有强制云原生重构,或者没有考虑这些优势。或者我所看到的新趋势,使多云变得比它需要的更复杂,并且未能定义常见的跨云服务,如安全和操作。在某些情况下,解决方案使用了太多的公共服务,但这些情况并不常见。

概括地说,云架构师应用了他们从书籍、视频、文章甚至我和其他专家报告技术应该如何利用的方法中学到的知识。架构师定义业务需求,然后将这些需求与最优化的解决方案相匹配。这是个好办法。

但是,假设供应商A拥有适用于您的财务运营的最佳原生应用程序,供应商B拥有适用于您的CRM需求的最佳原生应用程序,供应商C拥有适用于您的库存需求的最佳本机应用程序。为了满足这三个需求以及数十种其他选择(安全性、存储、网络等),使用多云来获得最佳产品可能不符合企业的总体最佳利益。这些选择中的每一个都增加了另一层复杂性和成本,很快就会超过额外的好处

这并不意味着廉价使用用于构建云解决方案的技术。只是要知道,获得最优化的架构仍然是艺术多于科学。有时你需要投资更多的技术,有时需要投资更少的技术。重要的是定义尽可能接近优化的内容。

今天,云优化意味着我们必须审核和重新评估我们当前的云解决方案,然后再考虑进一步增加指标。这并不容易,但考虑到潜在的价值返回到业务。在某些情况下,云优化甚至可以挽救业务。

当有云解决方案可用时,“足够好”团队中的许多员工倾向于成为三只聪明的猴子中的一只或全部:他们不想听到、看到或谈论他们帮助部署或当前运行的云解决方案的任何坏话。相反,团队中似乎总是有人“等等,这要花多少钱?”谁意识到云解决方案将继续消耗企业资源,其消耗量将远远超过应有的水平。他们将是第一个建议或坚持进行审计的人。

相关文章
|
23天前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
56 1
|
10天前
|
弹性计算 运维 监控
阿里云云服务诊断工具:合作伙伴架构师的深度洞察与优化建议
作为阿里云的合作伙伴架构师,我深入体验了其云服务诊断工具,该工具通过实时监控与历史趋势分析,自动化检查并提供详细的诊断报告,极大提升了运维效率和系统稳定性,特别在处理ECS实例资源不可用等问题时表现突出。此外,它支持预防性维护,帮助识别潜在问题,减少业务中断。尽管如此,仍建议增强诊断效能、扩大云产品覆盖范围、提供自定义诊断选项、加强教育与培训资源、集成第三方工具,以进一步提升用户体验。
653 243
|
15天前
|
机器学习/深度学习 人工智能 运维
人工智能在云计算中的运维优化:智能化的新时代
人工智能在云计算中的运维优化:智能化的新时代
109 49
|
3天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
19 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
14天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
45 4
【AI系统】计算图优化架构
|
4天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
23 3
|
4天前
|
Serverless 决策智能 UED
构建全天候自动化智能导购助手:从部署者的视角审视Multi-Agent架构解决方案
在构建基于多代理系统(Multi-Agent System, MAS)的智能导购助手过程中,作为部署者,我体验到了从初步接触到深入理解再到实际应用的一系列步骤。整个部署过程得到了充分的引导和支持,文档详尽全面,使得部署顺利完成,未遇到明显的报错或异常情况。尽管初次尝试时对某些复杂配置环节需反复确认,但整体流程顺畅。
|
22天前
|
监控 Serverless 云计算
探索Serverless架构:开发实践与优化策略
本文深入探讨了Serverless架构的核心概念、开发实践及优化策略。Serverless让开发者无需管理服务器即可运行代码,具有成本效益、高可扩展性和提升开发效率等优势。文章还详细介绍了函数设计、安全性、监控及性能和成本优化的最佳实践。
|
25天前
|
弹性计算 运维 开发者
后端架构优化:微服务与容器化的协同进化
在现代软件开发中,后端架构的优化是提高系统性能和可维护性的关键。本文探讨了微服务架构与容器化技术如何相辅相成,共同推动后端系统的高效运行。通过分析两者的优势和挑战,我们提出了一系列最佳实践策略,旨在帮助开发者构建更加灵活、可扩展的后端服务。
|
25天前
|
消息中间件 运维 Cloud Native
云原生架构下的微服务优化策略####
本文深入探讨了云原生环境下微服务架构的优化路径,针对服务拆分、通信效率、资源管理及自动化运维等核心环节提出了具体的优化策略。通过案例分析与最佳实践分享,旨在为开发者提供一套系统性的解决方案,以应对日益复杂的业务需求和快速变化的技术挑战,助力企业在云端实现更高效、更稳定的服务部署与运营。 ####
下一篇
DataWorks