带你读《云原生架构白皮书2022新版》——爱奇艺体育:体验 Serverless 极致扩缩容,资源利用率提升 40%(下)

本文涉及的产品
云原生网关 MSE Higress,422元/月
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 带你读《云原生架构白皮书2022新版》——爱奇艺体育:体验 Serverless 极致扩缩容,资源利用率提升 40%(下)

《云原生架构白皮书2022新版》——各个行业面临的挑战及解决方案——爱奇艺体育:体验 Serverless 极致扩缩容,资源利用率提升 40%(上) https://developer.aliyun.com/article/1232818


2、爱奇艺体育的 Serverless 实践



通过阿里云 Serverless 应用引擎 (SAE) 的弹性伸缩特性,爱奇艺体育只需要通过简单的配置规则就能够从容面对

定期的业务洪峰。同时,SAE 提供微服务的生命周期管理功能,使整个部署周期极大简单化,高效化。而内置无缝

集成的 ARMS 监控做到端到端的微服务解决方案,能够及时精准的定位问题,使得系统 Bug 无处隐藏,极大提升

用户体验。最后,应用高可用 AHAS 从服务降级、熔断、限流方面给出了近乎完美的解决方案。


image.png

通过 SAE 弹性策略解决方案,可以从容应对固定周期的业务洪峰,省去了原来预估资源、部署应用的操作,

极大减轻了运维团队的工作量,整体效率提升 40%。

通过 SAE 极致弹性的特性,可以做到在面对突增业务流量时的从容应对,无需临时部署应用,极大提升了用

户体验。

通过 SAE 自带的监控解决方案以及与 ARMS 监控的无缝集成,帮助客户快速、精准定位问题,整体 Bug

处理速度提升 30%。

SAE 极致扩缩容的背后是极致的资源利用率,帮助客户整体资源利用率提升近 50%。

通过 SAE 平台对微服务生命周期的管理,上线周期缩短达 40%。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
19天前
|
安全 容灾 网络安全
深度用云——释放企业潜能 | 网络先行——阿里云网络卓越架构白皮书正式发布
深度用云——释放企业潜能 | 网络先行——阿里云网络卓越架构白皮书正式发布
|
21天前
|
Cloud Native 安全 Serverless
云原生应用实战:基于阿里云Serverless的API服务开发与部署
随着云计算的发展,Serverless架构日益流行。阿里云函数计算(Function Compute)作为Serverless服务,让开发者无需管理服务器即可运行代码,按需付费,简化开发运维流程。本文从零开始,介绍如何使用阿里云函数计算开发简单的API服务,并探讨其核心优势与最佳实践。通过Python示例,演示创建、部署及优化API的过程,涵盖环境准备、代码实现、性能优化和安全管理等内容,帮助读者快速上手Serverless开发。
|
3月前
|
运维 Cloud Native Serverless
Serverless Argo Workflows大规模计算工作流平台荣获信通院“云原生技术创新标杆案例”
2024年12月24日,阿里云Serverless Argo Workflows大规模计算工作流平台荣获由中国信息通信研究院颁发的「云原生技术创新案例」奖。
|
5月前
|
Kubernetes Cloud Native Serverless
批处理系统:Batch批量计算与云原生Serverless Argo Workflows
本文对比了Batch批量计算与Serverless Argo Workflows在容器化批处理任务中的应用,分析了两者在任务定义、依赖关系、规模并发、高级编排、可移植性等方面的异同,帮助技术决策者根据自身需求选择合适的平台。
|
7月前
|
Cloud Native 安全 中间件
核心系统转型问题之云原生架构下的基础资源设施应重点考虑什么方面
核心系统转型问题之云原生架构下的基础资源设施应重点考虑什么方面
|
7月前
|
机器学习/深度学习 分布式计算 Cloud Native
云原生架构下的高性能计算解决方案:利用分布式计算资源加速机器学习训练
【8月更文第19天】随着大数据和人工智能技术的发展,机器学习模型的训练数据量和复杂度都在迅速增长。传统的单机训练方式已经无法满足日益增长的计算需求。云原生架构为高性能计算提供了新的可能性,通过利用分布式计算资源,可以在短时间内完成大规模数据集的训练任务。本文将探讨如何在云原生环境下搭建高性能计算平台,并展示如何使用 PyTorch 和 TensorFlow 这样的流行框架进行分布式训练。
171 2
|
7月前
|
Kubernetes 安全 Serverless
Kubernetes云原生问题之在Serverless Container中,Pod运行如何解决
Kubernetes云原生问题之在Serverless Container中,Pod运行如何解决
93 5
|
7月前
|
Cloud Native Serverless 云计算
云原生时代的技术演进:从微服务到Serverless
在数字化转型的浪潮中,云原生技术正成为推动企业IT架构现代化的重要力量。本文将探讨云原生技术的关键组成部分—微服务与Serverless架构—如何助力企业实现敏捷开发和高效运维。通过深入分析这两种架构模式的优势与挑战,我们旨在为读者揭示云原生环境下的最佳实践和未来发展趋势。
|
8月前
|
运维 Cloud Native 持续交付
云原生架构的演进:从微服务到无服务器计算
【7月更文挑战第28天】在数字化浪潮的推动下,云原生技术不断演进,引领着软件开发和运维模式的革新。本文将深入探讨云原生架构的发展历程,着重分析微服务架构与无服务器计算模型如何相互补充,共同推动现代应用的开发与部署。我们将从微服务的基本原则出发,探索其如何赋能团队快速迭代和扩展应用,进而阐述无服务器计算如何简化资源管理,降低运营成本。通过对比分析,揭示两者结合的优势,为读者提供构建未来云原生应用的洞见。
|
8月前
|
SQL Cloud Native 关系型数据库
云原生数据仓库使用问题之怎么新增资源组
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。