白话Elasticsearch66-针对集群重启时的shard恢复耗时过长问题定制的重要参数

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 白话Elasticsearch66-针对集群重启时的shard恢复耗时过长问题定制的重要参数

20190806092132811.jpg


概述

继续跟中华石杉老师学习ES,第66篇

课程地址https://www.roncoo.com/view/55


集群重启时的无意义shard重分配问题


image.png


在集群重启的时候,有一些配置会影响shard恢复的过程。


首先,我们需要理解默认配置下,shard恢复过程会发生什么事情。


如果我们有10个node,每个node都有一个shard,可能是primary shard或者replica shard,你有一个index,有5个primary shard,每个primary shard有一个replica shard。


如果我们将整个集群关闭了进行一些维护性的操作,比如给机器安装新的磁盘之类的事情。当我们重启集群的时候,肯定节点是一个接一个的启动的,可能会出现5个节点先启动了,然后剩下5个节点还没启动。


也许是因为剩下的5个节点没来得及启动,或者是因为一些原因耽搁了,总之不管是什么原因,就是现在只有5个节点是在线的。这5个节点会通过gossip协议互相通信,选举出一个master,然后组成一个集群。他们会发现数据没有被均匀的分布,因为有5个节点没有启动,那么那5个节点上的shard就是不可用的,集群中就少了一半的shard。此时在线的5个node就会将部分replica shard提升为primary shard,同时为每个primary shard复制足够的replica shard。


最后,可能剩下的5个节点加入了集群。但是这些节点发现本来是他们持有的shard已经被重新复制并且放在之前的5个node之中了,此时他们就会删除自己本地的数据。然后集群又会开始进行shard的rebalance操作,将最早启动的5个node上的shard均匀分布到后来启动的5个node上去。


在这个过程中,这些shard重新复制,移动,删除,再次移动的过程,会大量的耗费网络和磁盘资源。对于数据量庞大的集群来说,可能导致每次集群重启时,都有TB级别的数据无端移动,可能导致集群启动会耗费很长时间。但是如果所有的节点都可以等待整个集群中的所有节点都完全上线之后,所有的数据都有了以后,再决定是否要复制和移动shard,情况就会好很多。


shard recovery配置


所以现在问题我们已经知道了,那么我们就可以配置一些设置来解决这个问题。

首先我们需要设置一个参数,gateway.recover_after_nodes: 8

这个参数可以让es直到有足够的node都上线之后,再开始shard recovery的过程。所以这个参数是跟具体的集群相关的,要根据我们的集群中节点的数量来决定。


此外,还应该设置一个集群中至少要有多少个node,等待那些node的时间:gateway.expected_nodes: 10,gateway.recover_after_time: 5m。


经过上面的配置之后,es集群的行为会变成下面这样,等待至少8个节点在线,然后等待最多5分钟,或者10个节点都在线,开始shard recovery的过程。


这样就可以避免少数node启动时,就立即开始shard recovery,消耗大量的网络和磁盘资源,甚至可以将shard recovery过程从数小时缩短为数分钟。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
3月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
643 1
|
2月前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
78 0
|
3月前
|
缓存 监控 Java
Elasticsearch集群JVM调优
Elasticsearch集群JVM调优
84 5
|
3月前
|
存储 缓存 监控
Elasticsearch集群JVM调优堆外内存
Elasticsearch集群JVM调优堆外内存
73 1
|
3月前
|
监控 Java 测试技术
Elasticsearch集群JVM调优垃圾回收器的选择
Elasticsearch集群JVM调优垃圾回收器的选择
100 1
|
3月前
|
监控 安全 网络安全
Elasticsearch集群的网络设置
Elasticsearch集群的网络设置
86 3
|
3月前
|
存储 监控 固态存储
Elasticsearch集群硬件与资源分配
Elasticsearch集群硬件与资源分配
50 2
|
3月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
107 5
|
4月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
413 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
5月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo

热门文章

最新文章