【C++】类和对象(第一篇)(一)

简介: 【C++】类和对象(第一篇)

这篇文章我们开始学习C++中的类和对象。

1a329355a31a41bc913ecc39f4bfb2d7.png

1. 面向过程和面向对象初步认识

我们之前学的C语言是面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决问题。

0952ca90b08f46d4a9345b819882fd72.png

e7f13af410f444a7b2006acd7a3defb0.png

而C++是基于面向对象的,关注的是对象,将一件事情拆分成不同的对象,靠对象之间的交互完成。

c2308c63b70f40ee9796f8c85ec59126.png

9dd90acfbc834a79ae5165e0ddd16641.png

2.类的引入

我们之前在C语言中学过结构体:

但是C语言中的结构体只能定义变量,比如:

6d97ac2a964d46639e3abae25b7c58ef.png

对于这个结构体来说:struct ListNode是这个结构体的类型,struct必须带上的。

当然C++中我们依然能用结构体,因为C++兼容C:

1fdc600dbad047a2926c068e5320c424.png

首先这里给大家说一下C++中可以直接用struct后面的做结构体类型,可以不用加struct。

除此之外,在C++中:

在C++中,结构体内不仅可以定义变量,也可以定义函数。

比如:

之前在数据结构初阶中,用C语言方式实现的栈,结构体中只能定义变量;现在以C++方式实现,会发现struct中也可以定义函数。

typedef int DataType;
struct Stack
{
  //成员函数
  void Init(size_t capacity)
  {
    _array = (DataType*)malloc(sizeof(DataType) * capacity);
    if (nullptr == _array)
    {
      perror("malloc申请空间失败");
      return;
    }
    _capacity = capacity;
    _size = 0;
  }
  void Push(const DataType& data)
  {
    // 扩容
    _array[_size] = data;
    ++_size;
  }
  DataType Top()
  {
    return _array[_size - 1];
  }
  void Destroy()
  {
    if (_array)
    {
      free(_array);
      _array = nullptr;
      _capacity = 0;
      _size = 0;
    }
  }
  //成员函数
  DataType* _array;
  size_t _capacity;
  size_t _size;
};
int main()
{
  Stack s;
  s.Init(10);
  s.Push(1);
  s.Push(2);
  s.Push(3);
  cout << s.Top() << endl;
  s.Destroy();
  return 0;
}

通过.的方式可以调用结构体中的函数。

但是呢:

上面的这种结构体定义,在C++中,更喜欢用class,即我们接下来要重点学习的类来代替。

3.类的定义b33fb0e77dab4f54a87ed0dd134eb95c.png

class为定义类的关键字,ClassName为类的名字,{}中为类的主体,注意类定义结束时后面分号不能省略。

类体中内容称为类的成员:类中的变量称为类的属性或成员变量; 类中的函数称为类的方法或者成员函数

3.1 类的两种定义方式

  1. 声明和定义全部放在类体中,需注意:成员函数如果在类中定义,编译器会将其当成内联函数。

5601e28193b742abaa8e0b67ae60623b.png

  1. 类声明放在.h文件中,成员函数定义放在.cpp文件中,注意:成员函数名前需要加类名::
  2. 2a68f5bae2a2465791a2ff3ae15116e1.png
  3. 那在成员函数showlnfo前面加上Person::的作用呢其实就是告诉编译器showlnfo不是全局的函数,而是Person这个类中的成员函数,如果不加就会报错的,因为在全局找不到该函数。那这样如果在函数中用到了对应的成员变量,编译器也会到类中去寻找。

另外要注意如果又缺省参数前面我们说了要在函数声明中给。

3.2 成员变量命名规则建议

现在有这样一个类:

class Date
{
public:
  void Init(int year)
  {
    // 这里的year到底是成员变量,还是函数形参?
    year = year;
  }
private:
  int year;
};

Date有一个成员变量(属性)year,然后还有一个成员函数Init,但是Init函数的形参和成员变量同名,那这里就有一个问题,Init中的year到底是成员变量,还是函数形参?

我们可以来验证一下:

int main()
{
  Date d1;
  d1.Init(2023);
  return 0;
}

我们用Date这个类创建一个对象d1,然后调用Init,看能不能成功初始化成员变量中的year。

我们通过调试观察:

1389d65fb33d4af88fe434a0c03f834c.png

发现d1的成员变量year并没有真正得到初始化。

说明Init中的两个year都是形参。

所以呢,对于成员变量的命名我们给出这样的建议:

class Date
{
public:
 void Init(int year)
 {
 _year = year;
 }
private:
 int _year;
};

成员变量的前面我们可以加一个_和形参进行区分。

2b72a1cfd0b14a15a476b2e3fd9e3e50.png

或者这样:

class Date
{
public:
 void Init(int year)
 {
 mYear = year;
 }
private:
 int mYear;
};

在成员变量前面加一个m(member),表示它是成员变量。

当然:

这只是建议,大家可以按照自己的想法进行区分。以后大家进入公司工作主要看公司要求。

4. 类的访问限定符及封装

🆗,那我们上面不是用结构体struct简单的写了一下栈嘛

C语言结构体的区别是里面可以定义函数,但是我们说了在C++我们更喜欢用类(class)来代替。

那我们现在就把struct换成class:

0131d2f35ebf4a44aff25714b0365dad.png

但是我们发现换成class之后直接报了很多错误。说什么无法访问private成员?

这是怎么回事?

🆗,这就是我们接下来要了解的东西——C++中类访问限定符。

4.1 访问限定符

C++实现封装的方式:用类将对象的属性(成员变量)与方法(成员函数)结合在一块,让对象更加完善,通过访问权限选择性的将其接口提供给外部的用户使用:

fa93545384f6468db465f46631d36ae4.png

【访问限定符说明】

  1. class的默认访问权限为private,struct为public(因为struct要兼容C)

所以我刚才修改成class之后才会报这样的错,而struct没事

2dcb5ea1144f4f298953abe21381d153.png

  1. public修饰的成员在类外可以直接被访问

这也就是为什么我们之前用struct就没有报错,因为struct默认是public的,在类外也可以访问f4dc60496eaf4fffbbe91c12709e4a13.png


  1. protected和private修饰的成员在类外不能直接被访问

现阶段我们刚开始学习类和对象,可以先不在意protected和private具体的区别。

  1. 访问权限作用域从该访问限定符出现的位置开始直到下一个访问限定符出现时为止

比如:

98f14e76de38421a871ebfd919cbe872.png

  1. 如果后面没有访问限定符,作用范围就到 } 即类结束

比如:

ef604b9824a1466f8c7899a7075e5042.png

C++中struct和class的区别是什么?


C++需要兼容C语言,所以C++中struct可以当成结构体使用。另外C++中struct还可以用来定义类。和class定义类是一样的,区别是struct定义的类默认访问权限是public,class定义的类默认访问权限是private。

注意:在继承和模板参数列表位置,struct和class也有区别,后续给大家介绍。


4.2 封装

面向对象的三大特性:封装、继承、多态。

在类和对象阶段,主要是研究类的封装特性,那什么是封装呢?


封装:将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来和对象进行交互。

封装本质上是一种管理,让用户更方便使用类。

比如:对于电脑这样一个复杂的设备,提供给用户的就只有开关机键、通过键盘输入,显示器,USB插孔等,让用户和计算机进行交互,完成日常事务。但实际上电脑真正工作的却是CPU、显卡、内存等一些硬件元件。c4f3b27ec2724b9c9bebdcac431ca8ab.png

对于计算机使用者而言,不用关心内部核心部件,比如主板上线路是如何布局的,CPU内部是如何设计的等,用户只需要知道,怎么开机、怎么通过键盘和鼠标与计算机进行交互即可。因此计算机厂商在出厂时,在外部套上壳子,将内部实现细节隐藏起来,仅仅对外提供开关机、鼠标以及键盘插孔等,让用户可以与计算机进行交互即可。

在C++语言中实现封装,可以通过类将数据以及操作数据的方法进行有机结合,通过访问权限来隐藏对象内部实现细节,控制哪些方法可以在类外部直接被使用。

这个大家先了解一下即可,在后续学习过程中我们还会不断加深对封装等特性的理解。

5. 类的作用域

类定义了一个新的作用域,类的所有成员都在类的作用域中。在类体外定义成员时,需要使用 :: 作用域操作符指明成员属于哪个类域。

de04e91174e2430681dc2124ad31ef66.png

目录
相关文章
|
7月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
3月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
82 0
|
3月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
163 0
|
5月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
160 12
|
6月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
123 16
|
6月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
6月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
6月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
322 6
|
6月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
7月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)