Gradio机器学习模型快速部署工具【应用分享】翻译4

简介: Gradio机器学习模型快速部署工具【应用分享】翻译4

1.嵌入 IFrame


(/assets/img/anchor.svg)]()](https://gradio.app/sharing-your-app/#embedding-with-iframes)

要改为嵌入 IFrame(例如,如果您无法将 javascript 添加到您的网站),请添加此元素:


<iframe src="https://$your_space_host.hf.space"></iframe>

同样,您可以找到src=空间嵌入 URL 的属性,您可以在“嵌入此空间”按钮中找到它。

您还需要height手动添加一个固定的以及其他常规的 iframe 属性。例如:


<iframe src="https://abidlabs-pytorch-image-classifier.hf.space" frameBorder="0" height="900"></iframe>


2.API页面


image.png

渐变/你好世界 使用 Gradio构建。 托管在 image.png

如果您单击并打开上面的空间,您将在应用程序的页脚中看到一个“通过 API 使用”链接。

image.png

这是记录用户可用于查询函数的 REST API 的页面InterfaceBlocks应用程序也可以生成一个 API 页面,尽管 API 必须为每个事件侦听器显式命名,例如


btn.click(add, [num1, num2], output, api_name="addition")

这会将端点记录/api/addition/到自动生成的 API 页面。

注意:对于启用队列的Gradio 应用程序,如果用户向您的 API 端点发出 POST 请求,则可以绕过队列。要禁用此行为,请api_open=Falsequeue()方法中设置。


3.验证


您可能希望在您的应用程序前面放置一个身份验证页面,以限制谁可以打开您的应用程序。通过方法auth=中的关键字参数launch(),您可以提供一个包含用户名和密码的元组,或者一个可接受的用户名/密码元组列表;下面是一个为名为“admin”的单个用户提供基于密码的身份验证的示例:


demo.launch(auth=("admin", "pass1234"))

对于更复杂的身份验证处理,您甚至可以传递一个函数,该函数将用户名和密码作为参数,并返回 True 以允许身份验证,否则返回 False。这可用于向 3rd 方身份验证服务发出请求等。

下面是一个函数示例,它接受用户名和密码相同的任何登录:


def same_auth(username, password):
    return username == password
demo.launch(auth=same_auth)

为使身份验证正常工作,必须在您的浏览器中启用第三方 cookie。默认情况下,Safari、Chrome 隐身模式不是这种情况。


4.直接访问网络请求


当用户对您的应用做出预测时,您可能需要底层网络请求,以便获取请求标头(例如用于高级身份验证)、记录客户端的 IP 地址或其他原因。Gradio 以类似于 FastAPI 的方式支持这一点:只需添加一个类型提示为的函数参数gr.Request,Gradio 就会将网络请求作为该参数传入。这是一个例子:


import gradio as gr
def echo(name, request: gr.Request):
    if request:
        print("Request headers dictionary:", request.headers)
        print("IP address:", request.client.host)
    return name
io = gr.Interface(echo, "textbox", "textbox").launch()

注意:如果您的函数是直接调用而不是通过 UI 调用(例如,当示例被缓存时会发生这种情况),那么request将是None. 您应该明确处理这种情况,以确保您的应用不会抛出任何错误。这就是为什么我们有明确的检查if request


5.在另一个 FastAPI 应用程序中安装[![图片转存失败,建议将图片保存下来直接上传


(/assets/img/anchor.svg)]()](https://gradio.app/sharing-your-app/#mounting-within-another-fastapi-app)

在某些情况下,您可能有一个现有的 FastAPI 应用程序,并且您想要为 Gradio 演示添加一个路径。您可以使用 轻松地做到这一点gradio.mount_gradio_app()

这是一个完整的例子:


from fastapi import FastAPI
import gradio as gr
CUSTOM_PATH = "/gradio"
app = FastAPI()
@app.get("/")
def read_main():
    return {"message": "This is your main app"}
io = gr.Interface(lambda x: "Hello, " + x + "!", "textbox", "textbox")
app = gr.mount_gradio_app(app, io, path=CUSTOM_PATH)
# Run this from the terminal as you would normally start a FastAPI app: `uvicorn run:app`
# and navigate to http://localhost:8000/gradio in your browser.

请注意,此方法还允许您在自定义路径上运行 Gradio 应用程序(http://localhost:8000/gradio在上面的示例中)。


6.安全和文件访问


与他人共享您的 Gradio 应用程序(通过将其托管在 Spaces、您自己的服务器上或通过临时共享链接)会将主机上的某些文件**公开给您的 Gradio 应用程序的用户。**这样做是为了让 Gradio 应用程序能够显示由 Gradio 创建或由您的预测功能创建的输出文件。

特别是,Gradio 应用程序授予用户访问三种文件的权限:

  • Gradio 脚本启动所在的同一文件夹(或子目录)中的文件。例如,如果您的 gradio 脚本的路径是/home/usr/scripts/project/app.py并且您从 启动它/home/usr/scripts/project/,那么您共享的 Gradio 应用程序的用户将能够访问其中的任何文件/home/usr/scripts/project/。这是必需的,以便您可以轻松地在 Gradio 应用程序中引用这些文件。
  • Gradio 创建的临时文件。这些文件是由 Gradio 创建的,作为运行预测功能的一部分。例如,如果你的预测函数返回一个视频文件,那么 Gradio 会将该视频保存到一个临时文件中,然后将临时文件的路径发送到前端。
  • file_directories您通过中的参数明确允许的文件launch()。在某些情况下,您可能希望引用文件系统中的其他文件。该file_directories参数允许您传入您希望提供访问权限的其他目录列表。(默认情况下,没有其他文件目录)。

用户不应该能够访问主机上的其他任意路径。


目录
相关文章
|
28天前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
61 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
21天前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
142 88
|
2月前
|
机器学习/深度学习 监控 算法
机器学习在图像识别中的应用:解锁视觉世界的钥匙
机器学习在图像识别中的应用:解锁视觉世界的钥匙
405 95
|
26天前
|
机器学习/深度学习 数据采集 算法
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
158 36
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
167 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
8天前
|
机器学习/深度学习 安全 持续交付
让补丁管理更智能:机器学习的革命性应用
让补丁管理更智能:机器学习的革命性应用
30 9
|
20天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
62 18
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
17天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
42 4
|
2月前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!

热门文章

最新文章