C/C++每日一练(20230312) 二叉树专场

简介: C/C++每日一练(20230312) 二叉树专场

1. 二叉树的中序遍历

给定一个二叉树的根节点 root ,返回它的 中序 遍历。

示例 1:

7f372b0f54f87384cc6c732b3cddc585.jpeg

输入:root = [1,null,2,3]

输出:[1,3,2]


示例 2:

输入:root = []

输出:[]

示例 3:

输入:root = [1]

输出:[1]

示例 4:

31457a9f9368167556ffe0b6327ebc98.jpeg


输入:root = [1,2]

输出:[2,1]


示例 5:

5a5703522184390ad83f06fad6566364.jpeg



输入:root = [1,null,2]

输出:[1,2]


提示:

  • 树中节点数目在范围 [0, 100]
  • -100 <= Node.val <= 100

进阶:递归算法很简单,你可以通过迭代算法完成吗?

代码:

#include <stdio.h>
#include <stdlib.h>
#define null INT_MIN
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
void traverse(struct TreeNode *node, int *result, int *count)
{
    if (node == NULL)
    {
        return;
    }
    traverse(node->left, result, count);
    result[*count] = node->val;
    (*count)++;
    traverse(node->right, result, count);
}
int* inorderTraversal(struct TreeNode *root, int *returnSize)
{
    if (root == NULL)
    {
        *returnSize = 0;
        return NULL;
    }
    int count = 0;
    int *result = (int*)malloc(5000 * sizeof(int));
    traverse(root, result, &count);
    *returnSize = count;
    return result;
}
TreeNode* createTree(int nums[], int size = 0, int index = 0) {
    if (index >= size || nums[index] == null) {
        return NULL;
    }
    TreeNode *node = (TreeNode*)malloc(sizeof(TreeNode));
    node->val = nums[index];
    node->left = createTree(nums, size, 2 * index + 1);
    node->right = createTree(nums, size, 2 * index + 2); 
    return node;
}
int main() 
{
    int nums[] = {1, null, 2, null, null, 3}; 
    int size = sizeof(nums) / sizeof(nums[0]);
    TreeNode *root = createTree(nums, size); 
    int count = 0;
    int *result = inorderTraversal(root, &count);
    for (int i = 0; i < count; i++) {
        printf("%d ", result[i]);
    }
    printf("\n");
    return 0;
}


输出:

1 3 2

原题用C语言,改用C++代码如下:

#define null INT_MIN
#include <iostream>
#include <vector>
#include <stack>
using namespace std;
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
TreeNode* buildTree(vector<int> arr, int i = 0) {
    if (i >= arr.size() || arr[i] == null) {
        return NULL;
    }
    TreeNode* root = new TreeNode(arr[i]);
    if (root == NULL) return NULL;
    root->left = buildTree(arr, 2 * i + 1);
    root->right = buildTree(arr, 2 * i + 2);
    return root;
}
class Solution
{
private:
    void traversal(TreeNode *root, vector<int> &ret)
    {
        if (root != NULL)
        {
            traversal((*root).left, ret);
            ret.push_back(root->val);
            traversal((*root).right, ret);
        }
    }
public:
    vector<int> inorderTraversal(TreeNode *root)
    {
        vector<int> res;
        traversal(root, res);
        return res;
    }
};
int main() 
{
  Solution s;
    vector<int> root = {1, null, 2, null, null, 3};
    TreeNode* tree = buildTree(root);
    for (auto val: s.inorderTraversal(tree))
    cout << val << " ";
  cout << endl;
    root = {};
    tree = buildTree(root);
    for (auto val: s.inorderTraversal(tree))
    cout << val << " ";
  cout << endl;
    root = {1};
    tree = buildTree(root, 0);
    for (auto val: s.inorderTraversal(tree))
    cout << val << " ";
  cout << endl;
    return 0;
}


进阶1:

创建和遍历都不用递归法,其中创建时空节点下的“空”位置就不用再标注出来了,比如:递归创建时使用数组{1,null,2,null,null,3},直接{1,null,2,3}时节点Node(3)会被丢弃。

#include <bits/stdc++.h>
#define null INT_MIN
using namespace std;
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
TreeNode* buildTree(vector<int>& nums)
{
    if (nums.empty()) return nullptr;
  TreeNode *root = new TreeNode(nums.front());
    queue<TreeNode*> q;
    q.push(root);
    int i = 1;
    while(!q.empty() && i < nums.size())
    {
        TreeNode *cur = q.front();
        q.pop();
        if(i < nums.size() && nums[i] != null)
        {
            cur->left = new TreeNode(nums[i]);
            q.push(cur->left);
        }
        i++;
        if(i < nums.size() && nums[i] != null)
        {
            cur->right = new TreeNode(nums[i]);
            q.push(cur->right);
        }
        i++;
    }
    return root;
}
void inorderTraversal(TreeNode* root) {
    stack<TreeNode*> nodes;
    TreeNode* p = root;
    while (p != NULL || !nodes.empty()) {
        if (p != NULL) {
            nodes.push(p);
            p = p->left;
        } else {
            p = nodes.top();
            nodes.pop();
            cout << p->val << " ";
            p = p->right;
        }
    }
    cout << endl;
}
int main() 
{
    vector<int> nums = {1,null,2,3}; 
    TreeNode *root = buildTree(nums); 
    inorderTraversal(root);
  nums = {3,9,20,null,null,15,7};
  root = buildTree(nums); 
  inorderTraversal(root);
  nums = {1,2,2,3,3,null,null,4,4};
  root = buildTree(nums); 
  inorderTraversal(root);
    return 0;
}


输出:

1 3 2

9 3 15 20 7

4 3 4 2 3 1 2


进阶2:

遍历结果存入数组,再把数组转成某种样式的字符串形式

#include <bits/stdc++.h>
#define null INT_MIN
using namespace std;
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
TreeNode* buildTree(vector<int>& nums)
{
    if (nums.empty()) return nullptr;
  TreeNode *root = new TreeNode(nums.front());
    queue<TreeNode*> q;
    q.push(root);
    int i = 1;
    while(!q.empty() && i < nums.size())
    {
        TreeNode *cur = q.front();
        q.pop();
        if(i < nums.size() && nums[i] != null)
        {
            cur->left = new TreeNode(nums[i]);
            q.push(cur->left);
        }
        i++;
        if(i < nums.size() && nums[i] != null)
        {
            cur->right = new TreeNode(nums[i]);
            q.push(cur->right);
        }
        i++;
    }
    return root;
}
vector<int> inorderTraversal(TreeNode* root) {
    vector<int> res;
    stack<TreeNode*> nodes;
    TreeNode* p = root;
    while (p != NULL || !nodes.empty()) {
        if (p != NULL) {
            nodes.push(p);
            p = p->left;
        } else {
            p = nodes.top();
            nodes.pop();
            res.push_back(p->val);
            p = p->right;
        }
    }
    return res;
}
string vectorToString(vector<int> vect) {
    stringstream ss;
  ss << "[";
    for (int i = 0; i < vect.size(); i++)
  {
        ss << (vect[i] == null ? "null" : to_string(vect[i]));
        ss << (i < vect.size() - 1 ? ", " : "]");
    }
    return ss.str();
}
int main() 
{
    vector<int> nums = {1,null,2,3}; 
    TreeNode *root = buildTree(nums); 
    nums = inorderTraversal(root);
    cout << vectorToString(nums) << endl;
  nums = {3,9,20,null,null,15,7};
  root = buildTree(nums); 
    nums = inorderTraversal(root);
    cout << vectorToString(nums) << endl;
  nums = {1,2,2,3,3,null,null,4,4};
  root = buildTree(nums); 
    nums = inorderTraversal(root);
    cout << vectorToString(nums) << endl;
    return 0;
}

输出:

[1, 3, 2]

[9, 3, 15, 20, 7]

[4, 3, 4, 2, 3, 1, 2]


2. 平衡二叉树


给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。

示例 1:

341009251c7788edc838975732064bf1.jpeg


输入:root = [3,9,20,null,null,15,7]

输出:true


示例 2:


bce64ca4c0e80b345a5a286122112851.jpeg



输入:root = [1,2,2,3,3,null,null,4,4]

输出:false


示例 3:

输入:root = []

输出:true


提示:

  • 树中的节点数在范围 [0, 5000]
  • -10^4 <= Node.val <= 10^4

代码: 递归法

#include <bits/stdc++.h>
#define null INT_MIN
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution
{
public:
    int depth(TreeNode *root)
    {
        if (root == NULL)
            return 0;
        int left = depth(root->left);
        int right = depth(root->right);
        return fmax(left, right) + 1;
    }
    bool isBalanced(TreeNode *root)
    {
        if (root == NULL)
            return true;
        if (abs(depth(root->left) - depth(root->right)) > 1)
            return false;
        else
            return isBalanced(root->left) && isBalanced(root->right);
    }
};
TreeNode* createTree(int nums[], int size = 0, int index = 0) {
    if (index >= size || nums[index] == null) {
        return NULL;
    }
    TreeNode *node = (TreeNode*)malloc(sizeof(TreeNode));
    node->val = nums[index];
    node->left = createTree(nums, size, 2 * index + 1);
    node->right = createTree(nums, size, 2 * index + 2); 
    return node;
}
int main() 
{
    int nums1[] = {3,9,20,null,null,15,7}; 
    int size = sizeof(nums1) / sizeof(nums1[0]);
    TreeNode *root = createTree(nums1, size); 
    Solution s;
    printf("%d\n", s.depth(root->left));
    printf("%d\n", s.depth(root->right));
    printf("%s\n", s.isBalanced(root) ? "true" : "false");
    int nums2[] = {1,2,2,3,3,null,null,4,4}; 
    size = sizeof(nums2) / sizeof(nums2[0]);
    root = createTree(nums2, size); 
    printf("%d\n", s.depth(root->left));
    printf("%d\n", s.depth(root->right));
    printf("%s\n", s.isBalanced(root) ? "true" : "false");
    root = createTree(NULL); 
    printf("%s\n", s.isBalanced(root) ? "true" : "false");
    return 0;
}


输出:

1

2

true

3

1

false

true

进阶: statck / DFS

#include <bits/stdc++.h>
#define null INT_MIN
using namespace std;
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
TreeNode* buildTree(vector<int>& nums)
{
    if (nums.empty()) return nullptr;
  TreeNode *root = new TreeNode(nums.front());
    queue<TreeNode*> q;
    q.push(root);
    int i = 1;
    while(!q.empty() && i < nums.size())
    {
        TreeNode *cur = q.front();
        q.pop();
        if(i < nums.size() && nums[i] != null)
        {
            cur->left = new TreeNode(nums[i]);
            q.push(cur->left);
        }
        i++;
        if(i < nums.size() && nums[i] != null)
        {
            cur->right = new TreeNode(nums[i]);
            q.push(cur->right);
        }
        i++;
    }
    return root;
}
bool isBalanced(TreeNode* root) {
    stack<TreeNode*> s;
    TreeNode* p = root;
    TreeNode* last = nullptr; 
    unordered_map<TreeNode*, int> um; 
    int height = 0;
    while (p != nullptr || !s.empty()) {
        while (p != nullptr) {
            s.push(p);
            um[p] = ++height;
            p = p->left;
        }
        p = s.top();
        if (p->right == nullptr || last == p->right) { 
            int leftHeight = um[p->left];
            int rightHeight = um[p->right];
            if (abs(leftHeight - rightHeight) > 1) {
                return false;
            }
            height = max(leftHeight, rightHeight);
            s.pop();
            last = p;
            p = nullptr;
        } else {
            p = p->right;
        }
    }
    return true;
}
int main() 
{
    vector<int> nums = {3,9,20,null,null,15,7}; 
    TreeNode *root = buildTree(nums); 
    cout << (isBalanced(root) ? "true" : "false") << endl;
    nums = {1,2,2,3,3,null,null,4,4}; 
    root = buildTree(nums); 
    cout << (isBalanced(root) ? "true" : "false") << endl;
    nums = {}; 
    root = buildTree(nums); 
    cout << (isBalanced(root) ? "true" : "false") << endl;
    return 0;
}

输出:

true

false

true


3. 二叉树中的最大路径和


路径 被定义为一条从树中任意节点出发,沿父节点-子节点连接,达到任意节点的序列。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。

路径和 是路径中各节点值的总和。

给你一个二叉树的根节点 root ,返回其 最大路径和 。



示例 1:

image.jpeg


输入:root = [1,2,3]

输出:6

解释:最优路径是 2 -> 1 -> 3 ,路径和为 2 + 1 + 3 = 6

示例 2:

image.jpeg



输入:root = [-10,9,20,null,null,15,7]

输出:42

解释:最优路径是 15 -> 20 -> 7 ,路径和为 15 + 20 + 7 = 42

提示:

   树中节点数目范围是 [1, 3 * 10^4]

   -1000 <= Node.val <= 1000

代码:



#include <bits/stdc++.h>
#define null INT_MIN
using namespace std;
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
class Solution
{
public:
    int maxPathSum(TreeNode *root)
    {
        if (!root)
            return 0;
        vector<TreeNode *> ss;
        unordered_map<TreeNode *, int> val;
        ss.push_back(root);
        int len = 1;
        queue<TreeNode *> q{{root}};
        while (!q.empty())
        {
            TreeNode *t = q.front();
            q.pop();
            //cout << t->val << endl;
            if (t->left)
            {
                len++;
                q.push(t->left);
                ss.push_back(t->left);
            }
            if (t->right)
            {
                len++;
                q.push(t->right);
                ss.push_back(t->right);
            }
        }
        int res = INT_MIN;
        while (len > 0)
        {
            TreeNode *node = ss[--len];
            int ps = node->val;
            int s = ps;
            int ls = max(0, val[node->left]);
            int rs = max(0, val[node->right]);
            ps += max(ls, rs);
            val[node] = ps;
            s += ls + rs;
            res = max(s, res);
        }
        return res;
    }
};
TreeNode* buildTree(vector<int>& nums)
{
    if (nums.empty()) return nullptr;
  TreeNode *root = new TreeNode(nums.front());
    queue<TreeNode*> q;
    q.push(root);
    int i = 1;
    while(!q.empty() && i < nums.size())
    {
        TreeNode *cur = q.front();
        q.pop();
        if(i < nums.size() && nums[i] != null)
        {
            cur->left = new TreeNode(nums[i]);
            q.push(cur->left);
        }
        i++;
        if(i < nums.size() && nums[i] != null)
        {
            cur->right = new TreeNode(nums[i]);
            q.push(cur->right);
        }
        i++;
    }
    return root;
}
int main()
{
    vector<int> nums = {1,2,3}; 
    TreeNode *root = buildTree(nums); 
    Solution s;
    cout << s.maxPathSum(root) << endl;
    nums = {-10,9,20,null,null,15,7}; 
    root = buildTree(nums); 
    cout << s.maxPathSum(root) << endl;
    return 0;
}



输出:

6

42

递归法:

#include <bits/stdc++.h>
#define null INT_MIN
using namespace std;
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
class Solution
{
public:
  int maxPathSum(TreeNode* root)
  {
      int maxSum = INT_MIN;
      maxPathSum(root, maxSum);
      return maxSum;
  }
  int maxPathSum(TreeNode* root, int& maxSum)
  {
      if (root == nullptr) return 0;
      int leftSum = max(0, maxPathSum(root->left, maxSum));
      int rightSum = max(0, maxPathSum(root->right, maxSum));
      int curSum = root->val + leftSum + rightSum; // 经过当前节点的最大路径和
      maxSum = max(maxSum, curSum); // 更新最大路径和
      return root->val + max(leftSum, rightSum);
  }
};
TreeNode* buildTree(vector<int>& nums)
{
    if (nums.empty()) return nullptr;
  TreeNode *root = new TreeNode(nums.front());
    queue<TreeNode*> q;
    q.push(root);
    int i = 1;
    while(!q.empty() && i < nums.size())
    {
        TreeNode *cur = q.front();
        q.pop();
        if(i < nums.size() && nums[i] != null)
        {
            cur->left = new TreeNode(nums[i]);
            q.push(cur->left);
        }
        i++;
        if(i < nums.size() && nums[i] != null)
        {
            cur->right = new TreeNode(nums[i]);
            q.push(cur->right);
        }
        i++;
    }
    return root;
}
int main()
{
    vector<int> nums = {1,2,3}; 
    TreeNode *root = buildTree(nums); 
    Solution s;
    cout << s.maxPathSum(root) << endl;
    nums = {-10,9,20,null,null,15,7}; 
    root = buildTree(nums); 
    cout << s.maxPathSum(root) << endl;
    return 0;
}
目录
相关文章
二叉树进阶面试题(精华总结)【C++版本】
二叉树进阶面试题(精华总结)【C++版本】
145 1
|
存储 编译器 数据库
【C/C++ 数据结构 】线索二叉树全解析:从数学原理到C++实现
【C/C++ 数据结构 】线索二叉树全解析:从数学原理到C++实现
415 0
|
算法 C++ 开发者
【C/C++ 数据结构 】二叉树基本性质:对于任何一颗二叉树T,若其终端结点为n0 ,那么度数为2的结点数为n2。则n0=n2+1...
【C/C++ 数据结构 】二叉树基本性质:对于任何一颗二叉树T,若其终端结点为n0 ,那么度数为2的结点数为n2。则n0=n2+1...
328 0
|
2月前
|
C++
基本二叉树与排序二叉树(C++源码)
本程序实现二叉树基本操作与二叉排序树应用。支持前序建树、四种遍历、求深度、叶子数、第K层节点数及查找功能;并实现二叉排序树的构建、中序输出与查找比较次数统计,分析不同插入顺序对树形态和查找效率的影响。
|
11月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
318 12
|
11月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
192 10
|
11月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
477 3
|
存储 C++
【C++】二叉树进阶之二叉搜索树(下)
【C++】二叉树进阶之二叉搜索树(下)
99 4
|
Java 编译器 C++
【C++】二叉树进阶之二叉搜索树(上)
【C++】二叉树进阶之二叉搜索树(上)
99 3
|
算法 C++
【C++高阶】高效搜索的秘密:深入解析搜索二叉树
【C++高阶】高效搜索的秘密:深入解析搜索二叉树
115 2