《泛娱乐行业技术服务白皮书》——三、泛娱乐典型业务架构与场景——3.1直播类泛娱乐——3.1.5 通用直播场景(4)

简介: 《泛娱乐行业技术服务白皮书》——三、泛娱乐典型业务架构与场景——3.1直播类泛娱乐——3.1.5 通用直播场景(4)

《泛娱乐行业技术服务白皮书》——三、泛娱乐典型业务架构与场景——3.1直播类泛娱乐——3.1.5 通用直播场景(3) https://developer.aliyun.com/article/1231100?groupCode=supportservice



3.1.5.3.2 重保动作与流程

障客户业务在重大活动中稳定运行,业务异常及时处理,TAM对客户重大 动全程跟进护航,流程如下:


image.png


播护航checklist


序号

检查

认事项

01

户信息

户名/群名/UID

02

我方负责人员

务/架构师/技术服务工程师/产研

03

动时间

对活动具体时间

04

站地址

对主站地址

05

流域名

推流配置测试是否符合预

06

流域名

拉流配置测试是否符合预

07

流流并发数限制

认流数水位安全

08

播架构

动推流/触发拉流/L2回源/中心回源

09

AppName

核对appname

10

StreamName

对流名

11

估码率

12

码模板

码模板配置/测试正常

13

制配置

码模板配置/测试正常

14

播中心

确认所在直播中心region

15

众分布

配域名加速范围

16

峰值预估

需带宽和在线人数

17

流协议

Rtmp/flv/hls

18

流节点资源

据观众分布和预估量级,准备节点资源

19

带静态资源

态CDN/DCDN域名,量级、资源评估

 

(1)大活动提前一周报备,TAM确定好推拉流域名、流名、码率、转码模板 观众分布、预估峰值带宽、播流协议和活动时间等,及时向PDSA确定资源是否满 件;

(2)根据客需求配置主备推流,转码流,配置完成后交付客户测试验收;

(3)TAM使用天眼直播大盘全程跟进直播流的业务指标,出现异常告警及时反 排查处理;

(4)活动结束后,汇总活动数据并进行护航总结,并对活动护航遇到的问题进 行沉淀。避免再次出现类似的情况。

 


《泛娱乐行业技术服务白皮书》——三、泛娱乐典型业务架构与场景——3.1直播类泛娱乐——3.1.5 通用直播场景(5) https://developer.aliyun.com/article/1231098?groupCode=supportservice

目录
打赏
0
0
0
0
81
分享
相关文章
十大主流联邦学习框架:技术特性、架构分析与对比研究
联邦学习(FL)是保障数据隐私的分布式模型训练关键技术。业界开发了多种开源和商业框架,如TensorFlow Federated、PySyft、NVFlare、FATE、Flower等,支持模型训练、数据安全、通信协议等功能。这些框架在灵活性、易用性、安全性和扩展性方面各有特色,适用于不同应用场景。选择合适的框架需综合考虑开源与商业、数据分区支持、安全性、易用性和技术生态集成等因素。联邦学习已在医疗、金融等领域广泛应用,选择适配具体需求的框架对实现最优模型性能至关重要。
403 79
十大主流联邦学习框架:技术特性、架构分析与对比研究
探索云原生技术:容器化与微服务架构的融合之旅
本文将带领读者深入了解云原生技术的核心概念,特别是容器化和微服务架构如何相辅相成,共同构建现代软件系统。我们将通过实际代码示例,探讨如何在云平台上部署和管理微服务,以及如何使用容器编排工具来自动化这一过程。文章旨在为开发者和技术决策者提供实用的指导,帮助他们在云原生时代中更好地设计、部署和维护应用。
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
DeepSeekMoE是一种创新的大规模语言模型架构,融合了专家混合系统(MoE)、多头潜在注意力机制(MLA)和RMSNorm归一化。通过专家共享、动态路由和潜在变量缓存技术,DeepSeekMoE在保持性能的同时,将计算开销降低了40%,显著提升了训练和推理效率。该模型在语言建模、机器翻译和长文本处理等任务中表现出色,具备广泛的应用前景,特别是在计算资源受限的场景下。
466 29
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
|
3月前
|
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
236 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
82 10
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
32 4
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
深度用云——释放企业潜能 | 网络先行——阿里云网络卓越架构白皮书正式发布
深度用云——释放企业潜能 | 网络先行——阿里云网络卓越架构白皮书正式发布
社交软件红包技术解密(六):微信红包系统的存储层架构演进实践
微信红包本质是小额资金在用户帐户流转,有发、抢、拆三大步骤。在这个过程中对事务有高要求,所以订单最终要基于传统的RDBMS,这方面是它的强项,最终订单的存储使用互联网行业最通用的MySQL数据库。支持事务、成熟稳定,我们的团队在MySQL上有长期技术积累。但是传统数据库的扩展性有局限,需要通过架构解决。
73 18
建筑施工一体化信息管理平台源码,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
智慧工地云平台是专为建筑施工领域打造的一体化信息管理平台,利用大数据、云计算、物联网等技术,实现施工区域各系统数据汇总与可视化管理。平台涵盖人员、设备、物料、环境等关键因素的实时监控与数据分析,提供远程指挥、决策支持等功能,提升工作效率,促进产业信息化发展。系统由PC端、APP移动端及项目、监管、数据屏三大平台组成,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
102 7
云卓越架构:企业稳定性架构体系和AI业务场景探秘
本次分享由阿里云智能集团公共云技术服务部上海零售技术服务高级经理路志华主讲,主题为“云卓越架构:企业稳定性架构体系和AI业务场景探秘”。内容涵盖四个部分:1) 稳定性架构设计,强调高可用、可扩展性、安全性和可维护性;2) 稳定性保障体系和应急体系的建立,确保快速响应和恢复;3) 重大活动时的稳定重宝策略,如大促或新业务上线;4) AI在企业中的应用场景,包括智能编码、知识库问答、创意广告生成等。通过这些内容,帮助企业在云计算环境中构建更加稳定和高效的架构,并探索AI技术带来的创新机会。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等