GPT充当大脑,指挥多个模型协作完成各类任务,通用系统AutoML-GPT来了

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: GPT充当大脑,指挥多个模型协作完成各类任务,通用系统AutoML-GPT来了


使用 ChatGPT 实现通用人工智能,思路打开了。


当前,AI 模型虽然已经涉及非常广泛的应用领域,但大部分 AI 模型是为特定任务而设计的,它们往往需要大量的人力来完成正确的模型架构、优化算法和超参数。ChatGPT、GPT-4 爆火之后,人们看到了大型语言模型(LLM)在文本理解、生成、互动、推理等方面的巨大潜力。一些研究者尝试利用 LLM 探索通往通用人工智能(AGI)的新道路。


近期,来自德克萨斯州大学奥斯汀分校的研究者提出一种新思路 —— 开发任务导向型 prompt,利用 LLM 实现训练 pipeline 的自动化,并基于此思路推出新型系统 AutoML-GPT。



论文地址:

https://papers.labml.ai/paper/35151be0eb2011edb95839eec3084ddd


AutoML-GPT 使用 GPT 作为各种 AI 模型之间的桥梁,并用优化过的超参数来动态训练模型。AutoML-GPT 动态地接收来自 Model Card [Mitchell et al., 2019] 和 Data Card [Gebru et al., 2021] 的用户请求,并组成相应的 prompt 段落。最后,AutoML-GPT 借助该 prompt 段落自动进行多项实验,包括处理数据、构建模型架构、调整超参数和预测训练日志。


AutoML-GPT 通过最大限度地利用其强大的 NLP 能力和现有的人工智能模型,解决了各种测试和数据集中复杂的 AI 任务。大量实验和消融研究表明,AutoML-GPT 对许多人工智能任务(包括 CV 任务、NLP 任务)是通用的、有效的。


AutoML-GPT 简介


AutoML-GPT 是一个依赖数据和模型信息来格式化 prompt 输入段落的协作系统。其中,LLM 作为控制器,多个专家模型作为协作的执行者。AutoML-GPT 的工作流程包括四个阶段:数据处理、模型架构设计、超参数调整和训练日志生成。


具体来说,AutoML-GPT 的工作机制如下:



  • 通过 Model Card 和 Data Card 生成固定格式的 prompt 段落
  • 构建训练 pipeline,在选定的数据集和模型架构上处理用户需求
  • 生成性能训练日志并调整超参数
  • 根据自动建议的(auto-suggested)超参数调整模型


输入分解


AutoML-GPT 的第一阶段是让 LLM 接受用户输入。为了提高 LLM 的性能并生成有效的 prompt,该研究对输入 prompt 采用特定的指令。这些指令包括三个部分:Data Card、Model Card、评估指标和附加要求。


如下图 2 所示,Data Card 的关键部分由数据集名称、输入数据集类型(如图像数据或文本数据)、标签空间(如类别或分辨率)和默认评估指标组成。



如下图 3 所示,Model Card 由模型名称、模型结构、模型描述和架构超参数组成。通过提供这些信息,Model Card 能告知 LLM 整个机器学习系统使用了哪些模型,以及用户对模型架构的偏好。



除了 Data Card 和 Model Card,用户还可以选择请求更多的评估基准、评估指标或任何约束。AutoML-GPT 将这些任务规范作为高级指令提供给 LLM,用于相应地分析用户需求。


当有一系列需要处理的任务时,AutoML-GPT 需要为每个任务匹配相应的模型。为了达到这一目标,首先系统需要获得 Model Card 和用户输入中的模型描述。


然后,AutoML-GPT 使用 in-context 任务 - 模型分配机制,动态地为任务分配模型。这种方法通过将模型描述和对用户需求的更好理解结合起来,实现了增量模型(incremental model)访问,并提供了更大的开放性和灵活性。


用预测训练日志调整超参数


AutoML-GPT 根据 Data Card 和 Model Card 设置超参数,并通过生成超参数的训练日志来预测性能。该系统自动进行训练并返回训练日志。在数据集上的模型性能训练日志记录了训练过程中收集的各种指标和信息,这有助于了解模型训练进展,找出潜在问题,以及评估所选架构、超参数和优化方法的有效性。


实验


为了评估 AutoML-GPT 的性能,该研究使用 ChatGPT(OpenAI 的 GPT-4 版本)来实现它,并进行多项实验从多个角度展示了 AutoML-GPT 的效果。


下图 4 展示了使用 AutoML-GPT 在未知数据集上训练的结果:



下图 5 展示了 AutoML-GPT 在 COCO 数据集上完成目标检测任务的过程:



下图 6 展示了 AutoML-GPT 在 NQ 开放数据集(Natural Questions Open dataset,[Kwiatkowski et al., 2019])上的实验结果:


该研究还使用 XGBoost 在 UCI Adult 数据集 [Dua and Graff, 2017] 上评估了 AutoML-GPT,以探究其在分类任务上的性能,实验结果如下图 7 所示:



感兴趣的读者可以阅读论文原文,了解更多研究细节。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
179 2
|
3月前
|
数据采集 API 决策智能
华为诺亚联合中科大发布工具调用模型ToolACE,效果持平GPT-4获开源第一
 【10月更文挑战第10天】华为诺亚方舟实验室与中国科学技术大学合作推出ToolACE,一种自进化合成过程的工具调用模型。ToolACE通过多智能体交互和双重验证系统生成准确、复杂、多样化的工具学习数据,显著提升大型语言模型(LLM)的功能调用能力。实验结果显示,使用ToolACE数据训练的80亿参数模型性能媲美GPT-4,在伯克利功能调用排行榜上获得开源第一。
105 4
|
3月前
|
SQL 数据采集 自然语言处理
NL2SQL之DB-GPT-Hub<详解篇>:text2sql任务的微调框架和基准对比
NL2SQL之DB-GPT-Hub<详解篇>:text2sql任务的微调框架和基准对比
|
4月前
|
API 云栖大会
通义千问升级旗舰模型Qwen-Max,性能接近GPT-4o
通义旗舰模型Qwen-Max全方位升级,性能接近GPT-4o
1722 11
|
1月前
|
数据采集 人工智能 数据可视化
InternVL 2.5,首个MMMU超过70%的开源模型,性能媲美GPT-4o
近期Internvl2.5发布,性能与GPT-4o和Claude-3.5-sonnet等领先的商业模型相媲美,成为首个在MMMU上超过70%的开源模型,通过链式思考(CoT)推理实现了3.7个百分点的提升,展示了强大的测试时间可扩展性潜力。
|
5月前
|
人工智能 自然语言处理
公理训练让LLM学会因果推理:6700万参数模型比肩万亿参数级GPT-4
【8月更文挑战第3天】新论文提出“公理训练”法,使仅有6700万参数的语言模型掌握因果推理,性能媲美万亿级GPT-4。研究通过大量合成数据示例教授模型因果公理,实现有效推理并泛化至复杂图结构。尽管面临合成数据需求大及复杂关系处理限制,此法仍为语言模型的因果理解开辟新途径。[链接: https://arxiv.org/pdf/2407.07612]
90 1
|
5月前
|
知识图谱
ARTIST的中文文图生成模型问题之通过GPT生成图像序列的问题如何解决
ARTIST的中文文图生成模型问题之通过GPT生成图像序列的问题如何解决
|
2月前
|
自然语言处理 搜索推荐 Serverless
基于函数计算部署GPT-Sovits模型实现语音生成
阿里云开发者社区邀请您参加“基于函数计算部署GPT-Sovits模型实现语音生成”活动。完成指定任务即可获得收纳箱一个。活动时间从即日起至2024年12月13日24:00:00。快来报名吧!
|
3月前
|
存储 数据采集 数据安全/隐私保护
商汤、清华、复旦等开源百亿级多模态数据集,可训练类GPT-4o模型
商汤科技、清华大学和复旦大学等机构联合开源了名为OmniCorpus的多模态数据集,规模达百亿级,旨在支持类似GPT-4级别的大型多模态模型训练。该数据集包含86亿张图像和1696亿个文本标记,远超现有数据集规模并保持高质量,具备广泛来源和灵活性,可轻松转换为纯文本或图像-文本对。经验证,该数据集质量优良,有望促进多模态模型研究,但同时也面临存储管理、数据偏见及隐私保护等挑战。
211 60
|
2月前
|
弹性计算 自然语言处理 搜索推荐
活动实践 | 基于函数计算部署GPT-Sovits模型实现语音生成
通过阿里云函数计算部署GPT-Sovits模型,可快速实现个性化声音的文本转语音服务。仅需少量声音样本,即可生成高度仿真的语音。用户无需关注服务器维护与环境配置,享受按量付费及弹性伸缩的优势,轻松部署并体验高质量的语音合成服务。

热门文章

最新文章