绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程(2)

简介: 绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程

由于没有多的 GPU 可用于张量分片(tensor sharding),又能做些什么来训练具有更大批大小(batch size)的模型呢?其中一种解决方法就是梯度累积,可以通过它来修改前面提到的训练循环。


什么是梯度积累?梯度累积是一种在训练期间虚拟增加批大小(batch size)的方法,当可用的 GPU 内存不足以容纳所需的批大小时,这非常有用。在梯度累积中,梯度是针对较小的批次计算的,并在多次迭代中累积(通常是求和或平均),而不是在每一批次之后更新模型权重。一旦累积梯度达到目标「虚拟」批大小,模型权重就会使用累积梯度进行更新。参考下面更新的 PyTorch 训练循环:如果将 accumulation_steps 设置为 2,那么 zero_grad () 和 optimizer.step () 将只会每隔一秒调用一次。因此,使用 accumulation_steps=2 运行修改后的训练循环与将批大小(batch size)加倍具有相同的效果。例如,如果想使用 256 的批大小,但只能将 64 的批大小放入 GPU 内存中,就可以对大小为 64 的四个批执行梯度累积。(处理完所有四个批次后,将获得相当于单个批大小为 256 的累积梯度。)这样能够有效地模拟更大的批大小,而无需更大的 GPU 内存或跨不同设备的张量分片。虽然梯度累积可以帮助我们训练具有更大批量大小的模型,但它不会减少所需的总计算量。实际上,它有时会导致训练过程略慢一些,因为权重更新的执行频率较低。尽管如此,它却能帮我们解决限制问题,即批大小非常小时导致的更新频繁且混乱。例如,现在让我们运行上面的代码,批大小为 1,需要 16 个累积步骤(accumulation steps)来模拟批大小等于 16。输出如下:


...
torch : 2.0.0
lightning : 2.0.0
transformers: 4.27.2
Torch CUDA available? True
...
Epoch: 0001/0001 | Batch 23700/35000 | Loss: 0.0168
Epoch: 0001/0001 | Batch 24000/35000 | Loss: 0.0006
Epoch: 0001/0001 | Batch 24300/35000 | Loss: 0.0152
Epoch: 0001/0001 | Batch 24600/35000 | Loss: 0.0003
Epoch: 0001/0001 | Batch 24900/35000 | Loss: 0.0623
Epoch: 0001/0001 | Batch 25200/35000 | Loss: 0.0010
Epoch: 0001/0001 | Batch 25500/35000 | Loss: 0.0001
Epoch: 0001/0001 | Batch 25800/35000 | Loss: 0.0047
Epoch: 0001/0001 | Batch 26100/35000 | Loss: 0.0004
Epoch: 0001/0001 | Batch 26400/35000 | Loss: 0.1016
Epoch: 0001/0001 | Batch 26700/35000 | Loss: 0.0021
Epoch: 0001/0001 | Batch 27000/35000 | Loss: 0.0015
Epoch: 0001/0001 | Batch 27300/35000 | Loss: 0.0008
Epoch: 0001/0001 | Batch 27600/35000 | Loss: 0.0060
Epoch: 0001/0001 | Batch 27900/35000 | Loss: 0.0001
Epoch: 0001/0001 | Batch 28200/35000 | Loss: 0.0426
Epoch: 0001/0001 | Batch 28500/35000 | Loss: 0.0012
Epoch: 0001/0001 | Batch 28800/35000 | Loss: 0.0025
Epoch: 0001/0001 | Batch 29100/35000 | Loss: 0.0025
Epoch: 0001/0001 | Batch 29400/35000 | Loss: 0.0000
Epoch: 0001/0001 | Batch 29700/35000 | Loss: 0.0495
Epoch: 0001/0001 | Batch 30000/35000 | Loss: 0.0164
Epoch: 0001/0001 | Batch 30300/35000 | Loss: 0.0067
Epoch: 0001/0001 | Batch 30600/35000 | Loss: 0.0037
Epoch: 0001/0001 | Batch 30900/35000 | Loss: 0.0005
Epoch: 0001/0001 | Batch 31200/35000 | Loss: 0.0013
Epoch: 0001/0001 | Batch 31500/35000 | Loss: 0.0112
Epoch: 0001/0001 | Batch 31800/35000 | Loss: 0.0053
Epoch: 0001/0001 | Batch 32100/35000 | Loss: 0.0012
Epoch: 0001/0001 | Batch 32400/35000 | Loss: 0.1365
Epoch: 0001/0001 | Batch 32700/35000 | Loss: 0.0210
Epoch: 0001/0001 | Batch 33000/35000 | Loss: 0.0374
Epoch: 0001/0001 | Batch 33300/35000 | Loss: 0.0007
Epoch: 0001/0001 | Batch 33600/35000 | Loss: 0.0341
Epoch: 0001/0001 | Batch 33900/35000 | Loss: 0.0259
Epoch: 0001/0001 | Batch 34200/35000 | Loss: 0.0005
Epoch: 0001/0001 | Batch 34500/35000 | Loss: 0.4792
Epoch: 0001/0001 | Batch 34800/35000 | Loss: 0.0003
Epoch: 0001/0001 | Train acc.: 78.67% | Val acc.: 87.28%
Time elapsed 51.37 min
Test accuracy 87.37%


根据上面的结果,损失的波动比以前小了。此外,测试集性能提升了 10%。由于只迭代了训练集一次,因此每个训练样本只会遇到一次。训练用于 multiple epochs 的模型可以进一步提高预测性能。你可能还会注意到,这段代码的执行速度也比之前使用的批大小为 1 的代码快。如果使用梯度累积将虚拟批大小增加到 8,仍然会有相同数量的前向传播(forward passes)。然而,由于每八个 epoch 只更新一次模型,因此反向传播(backward passes)会很少,这样可更快地在一个 epoch(训练轮数)内迭代样本。结论梯度累积是一种在执行权重更新之前通过累积多个小的批梯度来模拟更大的批大小的技术。该技术在可用内存有限且内存中可容纳批大小较小的情况下提供帮助。但是,首先请思考一种你可以运行批大小的场景,这意味着可用内存大到足以容纳所需的批大小。在那种情况下,梯度累积可能不是必需的。事实上,运行更大的批大小可能更有效,因为它允许更多的并行性且能减少训练模型所需的权重更新次数。总之,梯度累积是一种实用的技术,可以用于降低小批大小干扰信息对梯度更新准确性的影响。这是迄今一种简单而有效的技术,可以让我们绕过硬件的限制。PS:可以让这个运行得更快吗?没问题。可以使用 PyTorch 2.0 中引入的 torch.compile 使其运行得更快。只需要添加一些 model = torch.compile,如下图所示:GitHub 上提供了完整的脚本。在这种情况下,torch.compile 在不影响建模性能的情况下又减少了十分钟的训练时间:

poch: 0001/0001 | Batch 26400/35000 | Loss: 0.0320
Epoch: 0001/0001 | Batch 26700/35000 | Loss: 0.0010
Epoch: 0001/0001 | Batch 27000/35000 | Loss: 0.0006
Epoch: 0001/0001 | Batch 27300/35000 | Loss: 0.0015
Epoch: 0001/0001 | Batch 27600/35000 | Loss: 0.0157
Epoch: 0001/0001 | Batch 27900/35000 | Loss: 0.0015
Epoch: 0001/0001 | Batch 28200/35000 | Loss: 0.0540
Epoch: 0001/0001 | Batch 28500/35000 | Loss: 0.0035
Epoch: 0001/0001 | Batch 28800/35000 | Loss: 0.0016
Epoch: 0001/0001 | Batch 29100/35000 | Loss: 0.0015
Epoch: 0001/0001 | Batch 29400/35000 | Loss: 0.0008
Epoch: 0001/0001 | Batch 29700/35000 | Loss: 0.0877
Epoch: 0001/0001 | Batch 30000/35000 | Loss: 0.0232
Epoch: 0001/0001 | Batch 30300/35000 | Loss: 0.0014
Epoch: 0001/0001 | Batch 30600/35000 | Loss: 0.0032
Epoch: 0001/0001 | Batch 30900/35000 | Loss: 0.0004
Epoch: 0001/0001 | Batch 31200/35000 | Loss: 0.0062
Epoch: 0001/0001 | Batch 31500/35000 | Loss: 0.0032
Epoch: 0001/0001 | Batch 31800/35000 | Loss: 0.0066
Epoch: 0001/0001 | Batch 32100/35000 | Loss: 0.0017
Epoch: 0001/0001 | Batch 32400/35000 | Loss: 0.1485
Epoch: 0001/0001 | Batch 32700/35000 | Loss: 0.0324
Epoch: 0001/0001 | Batch 33000/35000 | Loss: 0.0155
Epoch: 0001/0001 | Batch 33300/35000 | Loss: 0.0007
Epoch: 0001/0001 | Batch 33600/35000 | Loss: 0.0049
Epoch: 0001/0001 | Batch 33900/35000 | Loss: 0.1170
Epoch: 0001/0001 | Batch 34200/35000 | Loss: 0.0002
Epoch: 0001/0001 | Batch 34500/35000 | Loss: 0.4201
Epoch: 0001/0001 | Batch 34800/35000 | Loss: 0.0018
Epoch: 0001/0001 | Train acc.: 78.39% | Val acc.: 86.84%
Time elapsed 43.33 min
Test accuracy 87.91%

请注意,与之前相比准确率略有提高很可能是由于随机性。原文链接:https://lightning.ai/pages/blog/gradient-accumulation/

相关实践学习
基于阿里云DeepGPU实例,用AI画唯美国风少女
本实验基于阿里云DeepGPU实例,使用aiacctorch加速stable-diffusion-webui,用AI画唯美国风少女,可提升性能至高至原性能的2.6倍。
相关文章
|
30天前
|
物联网 测试技术 API
LLM 大模型学习必知必会系列(九):Agent微调最佳实践,用消费级显卡训练属于自己的Agent!
LLM 大模型学习必知必会系列(九):Agent微调最佳实践,用消费级显卡训练属于自己的Agent!
LLM 大模型学习必知必会系列(九):Agent微调最佳实践,用消费级显卡训练属于自己的Agent!
|
11天前
|
存储 机器学习/深度学习 自然语言处理
LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等]
LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等]
LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等]
|
1月前
|
并行计算 算法 物联网
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
|
4天前
|
存储 机器学习/深度学习 算法
Python算法基础教程
Python算法基础教程
|
30天前
微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉
研究表明,大型语言模型通过微调获取新知识可能引发幻觉,降低性能,尤其是当处理未知事实时。模型倾向于利用已有知识而非真正学习新知识。已知事实能提升性能,而未知事实则在后期微调中损害性能。使用“我不知道”来标记未知知识可减轻负面影响。最佳结果来自处理可能已知的事实,而非极其知名的事实。微调对模型知识的更新存在风险,需谨慎处理新旧知识的融合问题。建议使用RAG和策略来克服微调限制。[阅读完整论文以了解更多](https://avoid.overfit.cn/post/21daac41f99042be804b381a6a9700fb)。
49 3
|
30天前
|
人工智能 Python
LLM 大模型学习必知必会系列(八):10分钟微调专属于自己的大模型
LLM 大模型学习必知必会系列(八):10分钟微调专属于自己的大模型
|
1月前
|
机器学习/深度学习 自然语言处理
【大模型】如何处理微调LLM来编写创意内容?
【5月更文挑战第7天】【大模型】如何处理微调LLM来编写创意内容?
|
1月前
|
自然语言处理
LLM上下文窗口突破200万!无需架构变化+复杂微调,轻松扩展8倍
【5月更文挑战第12天】LongRoPE研究突破LLM上下文窗口限制,无需架构变更和复杂微调,实现8倍扩展至2048万个token。该方法利用位置嵌入非均匀性,通过高效搜索和优化初始化,适用于处理长文本任务,对模型性能影响小。但可能需要较多计算资源,且2048万的长度是否足够所有任务尚待探讨。[论文链接](https://arxiv.org/abs/2402.13753)
33 1
|
1月前
|
算法 机器人 Python
Python实现教程:平面最短路径算法
Python实现教程:平面最短路径算法
28 1
|
1月前
|
API 算法框架/工具 异构计算
Python中Keras微调Google Gemma:定制化指令增强大语言模型LLM
Python中Keras微调Google Gemma:定制化指令增强大语言模型LLM