300美元复刻ChatGPT九成功力,GPT-4亲自监考,130亿参数开源模型「小羊驼」来了

简介: 300美元复刻ChatGPT九成功力,GPT-4亲自监考,130亿参数开源模型「小羊驼」来了


OpenAI 的强大模型们,被开源社区复刻得差 不多了。


过去几个月,OpenAI 的 ChatGPT 彻底改变了聊天机器人领域的格局,也成为其他研究赶超的对象。


以 Meta 开源 LLaMA(直译为「大羊驼」)系列模型为起点,斯坦福大学等机构的研究人员先后在其上进行「二创」,开源了基于 LLaMA 的 Alpaca(羊驼)、Alpaca-Lora、Luotuo(骆驼)等轻量级类 ChatGPT 模型,大大降低了这类模型的研究、应用门槛,训练、推理成本一再降低。


由于「二创」过于丰富,生物学羊驼属的英文单词都快不够用了,但富有创意的研究者似乎总能给他们的模型找到新名字。近日,来自加州大学伯克利分校、卡内基梅隆大学、斯坦福大学、加州大学圣迭戈分校的研究者们又提出了一个新的模型 ——Vicuna(小羊驼)。这个模型也是基于 LLaMA,不过用到的是 13B 参数量的版本(作者表示,初步人工评测显示 13B 版本比 7B 版本模型要好不少,不过这不是一个严谨的结论)。


这个项目有趣的地方在于,作者在评测环节并没有通过某种「标准化考试」来测定模型性能(因为他们认为这些问题测不出模型在对话中的变通能力),而是让 GPT-4 当「考官」,看看 GPT-4 更倾向于 Vicuna-13B 还是其他基线模型的答案。结果显示,相比于现有的 SOTA 开源模型(LLaMA、Alpaca),GPT-4 在超过 90% 的问题中更倾向于 Vicuna,并且 Vicuna 在总分上达到了 ChatGPT 的 92%。



目前,该模型已经开源。



项目地址:https://github.com/lm-sys/FastChat


Meta 前段时间开源了系列大模型 LLaMA,Vicuna-13B 就是通过微调 LLaMA 实现了高性能的对话生成。这一点和斯坦福之前的 Alpaca 模型类似,但 Vicuna 比 Alpaca 的生成质量更好,速度也更快。


我们来对比一下 Alpaca 和 Vicuna 的生成结果,对于同一个问题:「为你最近刚去过的夏威夷旅行撰写一篇博客,重点介绍文化体验和必看景点」,Alpaca 的回答是:



Vicuna 的回答是:



显然,Vicuna 的回答比 Alpaca 优秀很多,甚至已经可以媲美 ChatGPT 的回答。这是怎么做到的呢?我们来看一下 Vicuna 的技术细节。


模型介绍


受 Meta LLaMA 和 Stanford Alpaca 项目的启发,Vicuna 使用从 ShareGPT 收集的用户共享数据对 LLaMA 模型进行微调。ShareGPT 是一个 ChatGPT 数据共享网站,用户会上传自己觉得有趣的 ChatGPT 回答。有传闻称谷歌的 Bard 也使用 ShareGPT 的数据,但不同的是,Vicuna 是一个完全开源的模型,研究团队明确强调 Vicuna 不能用于任何商业目的。


如下图所示,该研究首先从 ShareGPT 收集了大约 7 万个对话,然后改进了 Alpaca 提供的训练脚本,以更好地处理多轮对话和长序列。训练是一天内在 8 个 A100 GPU 上使用 PyTorch FSDP 完成的。


具体来说,Vicuna 以斯坦福的 Alpaca 为基础,并进行了如下改进:


  • 内存优化:为了使 Vicuna 能够理解长上下文,该研究将最大上下文长度从 512 扩展到 2048。这大大增加了 GPU 内存需求,因此该研究利用梯度检查点和闪存注意力来解决内存压力问题。
  • 多轮对话:该研究调整训练损失以考虑多轮对话,并仅根据聊天机器人的输出计算微调损失。
  • 通过 Spot 实例降低成本:该研究使用 SkyPilot 显著降低了成本,将 7B 模型的训练成本从 500 美元削减至 140 美元左右,将 13B 模型的训练成本从 1000 美元削减至 300 美元左右。


为了提供 demo,该研究实现了一个轻量级的分布式服务系统。



demo 地址:https://chat.lmsys.org/


研究团队提供了一个具体的演示样例,其中包含多轮对话,如下视频所示:


GPT-4 做考官,Vicuna 能考 90 分以上


在模型评估方面,该研究创建了 80 个不同的问题,并利用 GPT-4 来初步评估模型的输出质量,其中将每个模型的输出组合成每个问题的单个 prompt。然后将 prompt 发送到 GPT-4,由 GPT-4 来评估。LLaMA、Alpaca、ChatGPT 和 Vicuna 的详细比较如下表所示。



具体来说,研究者也发现,通过精心设计提示,GPT-4 能够生成基线模型难以解决的各种具有挑战性的问题。该研究设计了八类问题,包括费米问题、编码、数学任务等等,用以测试聊天机器人的各个方面。之后该研究为每个类别设计了十个问题,并统计 LLaMA、Alpaca、ChatGPT、Bard 和 Vicuna 在这些问题上的性能。然后要求 GPT-4 根据有用性、相关性、准确性和细节来评估上述模型生成的答案质量。


研究发现 GPT-4 不仅可以产生相对一致的分数,而且可以详细解释为什么给出这样的分数。但是,该研究也注意到 GPT-4 不太擅长判断编码、数学任务。



由 GPT-4 评估的响应比较。


如上图所示,相比于现有的 SOTA 开源模型(LLaMA、Alpaca),GPT-4 在超过 90% 的问题中更倾向于 Vicuna,并且 Vicuna 已经具备了和 ChatGPT、Bard 相当的竞争力。在 45% 的问题中,GPT-4 将 Vicuna 的回答评为更好或媲美 ChatGPT。


GPT-4 在 80 个问题上对几个模型的评估结果(满分为 10 分)如下表所示,Vicuna 在总分上达到 ChatGPT 的 92%。



当然,与其他大语言模型类似,Vicuna 也有一定的局限性。例如,它不擅长推理或数学任务,还有在输出信息的准确性和偏见等方面存在缺陷。


不过,作为一个开源模型,性能总体上可以达到 ChatGPT 的 90%,已经非常难得,并且成本只需 300 美元。感兴趣的读者快去试试吧。

参考链接:

https://zhuanlan.zhihu.com/p/618389519?utm_medium=social&utm_oi=56560353017856&utm_psn=1625413291274199040&utm_source=wechat_session

https://vicuna.lmsys.org/

相关文章
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
98 2
|
26天前
|
数据采集 API 决策智能
华为诺亚联合中科大发布工具调用模型ToolACE,效果持平GPT-4获开源第一
 【10月更文挑战第10天】华为诺亚方舟实验室与中国科学技术大学合作推出ToolACE,一种自进化合成过程的工具调用模型。ToolACE通过多智能体交互和双重验证系统生成准确、复杂、多样化的工具学习数据,显著提升大型语言模型(LLM)的功能调用能力。实验结果显示,使用ToolACE数据训练的80亿参数模型性能媲美GPT-4,在伯克利功能调用排行榜上获得开源第一。
52 4
|
2月前
|
API 云栖大会
通义千问升级旗舰模型Qwen-Max,性能接近GPT-4o
通义旗舰模型Qwen-Max全方位升级,性能接近GPT-4o
841 11
|
1月前
|
存储 数据采集 数据安全/隐私保护
商汤、清华、复旦等开源百亿级多模态数据集,可训练类GPT-4o模型
商汤科技、清华大学和复旦大学等机构联合开源了名为OmniCorpus的多模态数据集,规模达百亿级,旨在支持类似GPT-4级别的大型多模态模型训练。该数据集包含86亿张图像和1696亿个文本标记,远超现有数据集规模并保持高质量,具备广泛来源和灵活性,可轻松转换为纯文本或图像-文本对。经验证,该数据集质量优良,有望促进多模态模型研究,但同时也面临存储管理、数据偏见及隐私保护等挑战。
143 60
|
24天前
|
算法 搜索推荐 机器人
【ChatGPT】参加计算机科学考试(GPT-4对比GPT-3.5)
【ChatGPT】参加计算机科学考试(GPT-4对比GPT-3.5)
35 0
|
1月前
|
API
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
39 0
|
1月前
|
开发工具 git
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
53 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】ChatGPT模型原理介绍(下)
【AI大模型】ChatGPT模型原理介绍(下)
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】ChatGPT模型原理介绍(上)
【AI大模型】ChatGPT模型原理介绍(上)
|
3月前
|
人工智能 自然语言处理 搜索推荐
chatgpt这么火,现在AI搜索引擎有哪些呢?
国外AI搜索引擎包括ChatGPT,擅长自然语言处理与内容生成;Google Bard,提供智能个性化搜索体验;Microsoft Bing集成GPT模型增强智能检索;Perplexity AI以简洁答案及文献引用著称;Neeva强调隐私保护与无广告服务。国内方面,天工AI支持多种功能如知识问答与代码编程;腾讯元宝基于混元模型助力内容创造与学习;360AI搜索以精准全面的信息搜索见长;秘塔AI专注提升写作质量和效率;开搜AI搜索提供个性化智能搜索服务。以上引擎均利用先进AI技术提升用户体验。更多详情参阅[AI搜索合集](zhangfeidezhu.com/?page_id=651)。
110 8
chatgpt这么火,现在AI搜索引擎有哪些呢?