300美元复刻ChatGPT九成功力,GPT-4亲自监考,130亿参数开源模型「小羊驼」来了

简介: 300美元复刻ChatGPT九成功力,GPT-4亲自监考,130亿参数开源模型「小羊驼」来了


OpenAI 的强大模型们,被开源社区复刻得差 不多了。


过去几个月,OpenAI 的 ChatGPT 彻底改变了聊天机器人领域的格局,也成为其他研究赶超的对象。


以 Meta 开源 LLaMA(直译为「大羊驼」)系列模型为起点,斯坦福大学等机构的研究人员先后在其上进行「二创」,开源了基于 LLaMA 的 Alpaca(羊驼)、Alpaca-Lora、Luotuo(骆驼)等轻量级类 ChatGPT 模型,大大降低了这类模型的研究、应用门槛,训练、推理成本一再降低。


由于「二创」过于丰富,生物学羊驼属的英文单词都快不够用了,但富有创意的研究者似乎总能给他们的模型找到新名字。近日,来自加州大学伯克利分校、卡内基梅隆大学、斯坦福大学、加州大学圣迭戈分校的研究者们又提出了一个新的模型 ——Vicuna(小羊驼)。这个模型也是基于 LLaMA,不过用到的是 13B 参数量的版本(作者表示,初步人工评测显示 13B 版本比 7B 版本模型要好不少,不过这不是一个严谨的结论)。


这个项目有趣的地方在于,作者在评测环节并没有通过某种「标准化考试」来测定模型性能(因为他们认为这些问题测不出模型在对话中的变通能力),而是让 GPT-4 当「考官」,看看 GPT-4 更倾向于 Vicuna-13B 还是其他基线模型的答案。结果显示,相比于现有的 SOTA 开源模型(LLaMA、Alpaca),GPT-4 在超过 90% 的问题中更倾向于 Vicuna,并且 Vicuna 在总分上达到了 ChatGPT 的 92%。



目前,该模型已经开源。



项目地址:https://github.com/lm-sys/FastChat


Meta 前段时间开源了系列大模型 LLaMA,Vicuna-13B 就是通过微调 LLaMA 实现了高性能的对话生成。这一点和斯坦福之前的 Alpaca 模型类似,但 Vicuna 比 Alpaca 的生成质量更好,速度也更快。


我们来对比一下 Alpaca 和 Vicuna 的生成结果,对于同一个问题:「为你最近刚去过的夏威夷旅行撰写一篇博客,重点介绍文化体验和必看景点」,Alpaca 的回答是:



Vicuna 的回答是:



显然,Vicuna 的回答比 Alpaca 优秀很多,甚至已经可以媲美 ChatGPT 的回答。这是怎么做到的呢?我们来看一下 Vicuna 的技术细节。


模型介绍


受 Meta LLaMA 和 Stanford Alpaca 项目的启发,Vicuna 使用从 ShareGPT 收集的用户共享数据对 LLaMA 模型进行微调。ShareGPT 是一个 ChatGPT 数据共享网站,用户会上传自己觉得有趣的 ChatGPT 回答。有传闻称谷歌的 Bard 也使用 ShareGPT 的数据,但不同的是,Vicuna 是一个完全开源的模型,研究团队明确强调 Vicuna 不能用于任何商业目的。


如下图所示,该研究首先从 ShareGPT 收集了大约 7 万个对话,然后改进了 Alpaca 提供的训练脚本,以更好地处理多轮对话和长序列。训练是一天内在 8 个 A100 GPU 上使用 PyTorch FSDP 完成的。


具体来说,Vicuna 以斯坦福的 Alpaca 为基础,并进行了如下改进:


  • 内存优化:为了使 Vicuna 能够理解长上下文,该研究将最大上下文长度从 512 扩展到 2048。这大大增加了 GPU 内存需求,因此该研究利用梯度检查点和闪存注意力来解决内存压力问题。
  • 多轮对话:该研究调整训练损失以考虑多轮对话,并仅根据聊天机器人的输出计算微调损失。
  • 通过 Spot 实例降低成本:该研究使用 SkyPilot 显著降低了成本,将 7B 模型的训练成本从 500 美元削减至 140 美元左右,将 13B 模型的训练成本从 1000 美元削减至 300 美元左右。


为了提供 demo,该研究实现了一个轻量级的分布式服务系统。



demo 地址:https://chat.lmsys.org/


研究团队提供了一个具体的演示样例,其中包含多轮对话,如下视频所示:


GPT-4 做考官,Vicuna 能考 90 分以上


在模型评估方面,该研究创建了 80 个不同的问题,并利用 GPT-4 来初步评估模型的输出质量,其中将每个模型的输出组合成每个问题的单个 prompt。然后将 prompt 发送到 GPT-4,由 GPT-4 来评估。LLaMA、Alpaca、ChatGPT 和 Vicuna 的详细比较如下表所示。



具体来说,研究者也发现,通过精心设计提示,GPT-4 能够生成基线模型难以解决的各种具有挑战性的问题。该研究设计了八类问题,包括费米问题、编码、数学任务等等,用以测试聊天机器人的各个方面。之后该研究为每个类别设计了十个问题,并统计 LLaMA、Alpaca、ChatGPT、Bard 和 Vicuna 在这些问题上的性能。然后要求 GPT-4 根据有用性、相关性、准确性和细节来评估上述模型生成的答案质量。


研究发现 GPT-4 不仅可以产生相对一致的分数,而且可以详细解释为什么给出这样的分数。但是,该研究也注意到 GPT-4 不太擅长判断编码、数学任务。



由 GPT-4 评估的响应比较。


如上图所示,相比于现有的 SOTA 开源模型(LLaMA、Alpaca),GPT-4 在超过 90% 的问题中更倾向于 Vicuna,并且 Vicuna 已经具备了和 ChatGPT、Bard 相当的竞争力。在 45% 的问题中,GPT-4 将 Vicuna 的回答评为更好或媲美 ChatGPT。


GPT-4 在 80 个问题上对几个模型的评估结果(满分为 10 分)如下表所示,Vicuna 在总分上达到 ChatGPT 的 92%。



当然,与其他大语言模型类似,Vicuna 也有一定的局限性。例如,它不擅长推理或数学任务,还有在输出信息的准确性和偏见等方面存在缺陷。


不过,作为一个开源模型,性能总体上可以达到 ChatGPT 的 90%,已经非常难得,并且成本只需 300 美元。感兴趣的读者快去试试吧。

参考链接:

https://zhuanlan.zhihu.com/p/618389519?utm_medium=social&utm_oi=56560353017856&utm_psn=1625413291274199040&utm_source=wechat_session

https://vicuna.lmsys.org/

相关文章
|
16天前
|
人工智能 Linux API
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
Omnitool 是一款开源的 AI 桌面环境,支持本地运行,提供统一交互界面,快速接入 OpenAI、Stable Diffusion、Hugging Face 等主流 AI 平台,具备高度扩展性。
319 94
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
|
8天前
|
人工智能 算法 测试技术
OctoTools:斯坦福开源AI推理神器!16项测试准确率碾压GPT-4o,一键搞定复杂任务
OctoTools 是斯坦福大学推出的开源智能体框架,通过标准化工具卡片和自动化工具集优化算法,显著提升复杂推理任务的解决效率,支持多领域应用。
47 3
OctoTools:斯坦福开源AI推理神器!16项测试准确率碾压GPT-4o,一键搞定复杂任务
|
13天前
|
存储 人工智能 关系型数据库
HiveChat:告别模型选择困难!开源ChatGPT聚合神器上线:一键切换10+模型,权限管控全免费
HiveChat 是一款专为中小团队设计的开源 AI 聊天应用,支持多种主流 AI 模型,提供高效的团队沟通和智能辅助功能。
63 9
HiveChat:告别模型选择困难!开源ChatGPT聚合神器上线:一键切换10+模型,权限管控全免费
|
6天前
|
机器学习/深度学习 人工智能 编解码
R1-Onevision:开源多模态推理之王!复杂视觉难题一键解析,超越GPT-4V
R1-Onevision 是一款开源的多模态视觉推理模型,基于 Qwen2.5-VL 微调,专注于复杂视觉推理任务。它通过整合视觉和文本数据,能够在数学、科学、深度图像理解和逻辑推理等领域表现出色,并在多项基准测试中超越了 Qwen2.5-VL-7B 和 GPT-4V 等模型。
60 0
R1-Onevision:开源多模态推理之王!复杂视觉难题一键解析,超越GPT-4V
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
通古大模型:古籍研究者狂喜!华南理工开源文言文GPT:AI自动断句+写诗翻译,24亿语料喂出来的学术神器
通古大模型由华南理工大学开发,专注于古籍文言文处理,具备强大的古文句读、文白翻译和诗词创作功能。
91 11
通古大模型:古籍研究者狂喜!华南理工开源文言文GPT:AI自动断句+写诗翻译,24亿语料喂出来的学术神器
|
15天前
|
人工智能 Kubernetes 测试技术
SWE-Lancer:OpenAI发布衡量AI工程能力的「血汗标尺」!1400个百万美元任务实测,GPT-4o仅能赚2.9万刀?
SWE-Lancer 是 OpenAI 推出的基准测试,评估语言模型在自由职业软件工程任务中的表现,涵盖真实任务、端到端测试和多选项评估。
70 4
SWE-Lancer:OpenAI发布衡量AI工程能力的「血汗标尺」!1400个百万美元任务实测,GPT-4o仅能赚2.9万刀?
|
1天前
|
Web App开发 人工智能 自然语言处理
GPT-5涌现能力可预测?UC伯克利仅使用当前模型检查点预测未来模型
加州大学伯克利分校的一项新研究提出了一种基于微调大型语言模型(LLM)的方法,以预测未来模型的涌现能力。通过在特定任务上微调现有模型并拟合参数化函数,研究团队能够在四个NLP基准测试中准确预测未来模型的能力。该方法为模型开发者和政策制定者提供了重要工具,但也存在局限性,如仅能预测4倍计算资源内的涌现现象。论文地址:https://arxiv.org/pdf/2411.16035。
15 1
|
2月前
|
机器学习/深度学习 人工智能 算法
k1.5:性能超越 GPT-4 和 Claude 3.5!Kimi 新一代多模态推理模型
Kimi k1.5 是月之暗面推出的多模态思考模型,具备强大的推理和多模态处理能力,支持长链思维与短链思维,性能超越GPT-4和Claude 3.5。
378 10
k1.5:性能超越 GPT-4 和 Claude 3.5!Kimi 新一代多模态推理模型
|
23天前
|
存储 人工智能 API
ChatGPT-on-WeChat:Star32.4k, DeepSeek加持!这款开源神器秒变AI助手,聊天体验直接起飞!
嗨,大家好,我是小华同学。今天为大家介绍一款结合DeepSeek引擎的开源项目——ChatGPT-on-WeChat,由开发者zhayujie打造。它将微信变成智能AI助手,支持文本、图片、语音对话,具备定时提醒、天气查询等扩展功能,完全开源且易于定制。项目地址:https://github.com/zhayujie/chatgpt-on-wechat。关注我们,获取更多优质开源项目和高效学习方法。
194 11
|
2月前
|
人工智能 Python
JoyCaption:开源的图像转提示词生成工具,支持多种风格和场景,性能与 GPT4o 相当
JoyCaption 是一款开源的图像提示词生成工具,支持多种生成模式和灵活的提示选项,适用于社交媒体、图像标注、内容创作等场景,帮助用户快速生成高质量图像描述。
266 21
JoyCaption:开源的图像转提示词生成工具,支持多种风格和场景,性能与 GPT4o 相当

热门文章

最新文章