《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(2)

简介: 《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(2)

《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(1) https://developer.aliyun.com/article/1228308



应用场景

美团实时数仓业务主要包含两类实时生产链路:

image.png


第一类应用场景是基于 FlinkSQL + OLAP 的实时生产链路。这个业务链路的实时数据源有两个,分别是业务 DB 的变更事件和业务服务的日志事件,这些事件首先会被收集到 Kafka 中,然后 DB 事件会按表名分发到新的 Kafka 中,DB 和日志的数据也会在这一层进行格式上的统一并完成实时数仓的 ODS 层。然后业务会使用 FlinkSQL 来清洗和关联 ODS 层的数据,生成实时数仓的主题宽表,最后写入 OLAP 查询引擎做实时分析。对于时效性要求不高的场景,部分业务还会在 OLAP 引擎上配置分钟级别的调度来减少相同查询的压力;


image.png


第二类应用场景的不同点在于,业务实时数仓的主题宽表数据并不是直接写入 OLAP 查询引擎,而是继续写入 Kafka,使用 FlinkSQL 做 APP 层的指标聚合,最终把预计算的指标数据写入 OLAP、DB 或 KV 这类应用层的存储。这种方式更适合对接数据服务,因为它兼顾了数据的时效性和高 QPS 的查询。


生产实践

在实际推广 FlinkSQL 的过程中,美团也面临了不少挑战。  


第1个问题是双流关联的大状态问题,FlinkSQL 的双流关联会保留左右流的历史数据来互相关联,需要关联的时间间隔越长,保存的历史数据就会越多,状态也就会越大。比如,要关联订单的下单事件和退款事件,并保证计算结果的正确性,需要考虑这两个事件发生的间隔,可能是一个月甚至更久。  

image.png


上图左侧是一个双流关联的有状态 SQL 作业,图中的 Mem 和 Disk 组成了 SQL 作业的 TaskManager 节点,SQL 作业状态后端使用 RocksDB,状态持久化在 HDFS 文件系统上。一开始我们尝试把 SQL 作业的状态设置为保留一个月,但 SQL 作业会变得不稳定,出现内存超限、状态读取性能下降等问题,只能不断增加作业的 TM 数和内存大小来缓解。  


即使这样,业务上仍然存在两个痛点。首先是关联数据初始化难,目前公司 Kafka 数据源对历史回溯有限制,因此业务不能构建出完整的历史状态,即使 Kafka 支持了更久的回溯,状态初始化的效率也依然是一个问题。其次,内存资源开销大,特别是当多个 SQL 作业关联相同的数据源时,需要为每个 SQL 作业都分配相应的内存资源,不同 SQL 作业间的状态是隔离的,作业间相同的关联数据不能复用。  



《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(3) https://developer.aliyun.com/article/1228304

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
6月前
|
存储 消息中间件 人工智能
Lazada 如何用实时计算 Flink + Hologres 构建实时商品选品平台
本文整理自 Lazada Group EVP 及供应链技术负责人陈立群在 Flink Forward Asia 2025 新加坡实时分析专场的分享。作为东南亚领先的电商平台,Lazada 面临在六国管理数十亿商品 SKU 的挑战。为实现毫秒级数据驱动决策,Lazada 基于阿里云实时计算 Flink 和 Hologres 打造端到端实时商品选品平台,支撑日常运营与大促期间分钟级响应。本文深入解析该平台如何通过流式处理与实时分析技术重构电商数据架构,实现从“事后分析”到“事中调控”的跃迁。
549 55
Lazada 如何用实时计算 Flink + Hologres 构建实时商品选品平台
|
9月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
在数字化转型中,企业亟需从海量数据中快速提取价值并转化为业务增长动力。5月15日19:00-21:00,阿里云三位技术专家将讲解Kafka与Flink的强强联合方案,帮助企业零门槛构建分布式实时分析平台。此组合广泛应用于实时风控、用户行为追踪等场景,具备高吞吐、弹性扩缩容及亚秒级响应优势。直播适合初学者、开发者和数据工程师,参与还有机会领取定制好礼!扫描海报二维码或点击链接预约直播:[https://developer.aliyun.com/live/255088](https://developer.aliyun.com/live/255088)
632 35
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
|
4月前
|
存储 消息中间件 人工智能
云栖实录|实时计算 Flink 全新升级 - 全栈流处理平台助力实时智能
本文根据 2025 云栖大会演讲整理而成,演讲信息如下 演讲人:黄鹏程 阿里云智能集团计算平台事业部实时计算Flink版产品负责人
359 1
云栖实录|实时计算 Flink 全新升级 - 全栈流处理平台助力实时智能
|
9月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
283 12
|
11月前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
探索Flink动态CEP:杭州银行的实战案例
515 5
|
11月前
|
SQL 消息中间件 Serverless
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
360 4
|
11月前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
810 2
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
788 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
454 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式

相关产品

  • 实时计算 Flink版