《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(2)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(2)

《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(1) https://developer.aliyun.com/article/1228308



应用场景

美团实时数仓业务主要包含两类实时生产链路:

image.png


第一类应用场景是基于 FlinkSQL + OLAP 的实时生产链路。这个业务链路的实时数据源有两个,分别是业务 DB 的变更事件和业务服务的日志事件,这些事件首先会被收集到 Kafka 中,然后 DB 事件会按表名分发到新的 Kafka 中,DB 和日志的数据也会在这一层进行格式上的统一并完成实时数仓的 ODS 层。然后业务会使用 FlinkSQL 来清洗和关联 ODS 层的数据,生成实时数仓的主题宽表,最后写入 OLAP 查询引擎做实时分析。对于时效性要求不高的场景,部分业务还会在 OLAP 引擎上配置分钟级别的调度来减少相同查询的压力;


image.png


第二类应用场景的不同点在于,业务实时数仓的主题宽表数据并不是直接写入 OLAP 查询引擎,而是继续写入 Kafka,使用 FlinkSQL 做 APP 层的指标聚合,最终把预计算的指标数据写入 OLAP、DB 或 KV 这类应用层的存储。这种方式更适合对接数据服务,因为它兼顾了数据的时效性和高 QPS 的查询。


生产实践

在实际推广 FlinkSQL 的过程中,美团也面临了不少挑战。  


第1个问题是双流关联的大状态问题,FlinkSQL 的双流关联会保留左右流的历史数据来互相关联,需要关联的时间间隔越长,保存的历史数据就会越多,状态也就会越大。比如,要关联订单的下单事件和退款事件,并保证计算结果的正确性,需要考虑这两个事件发生的间隔,可能是一个月甚至更久。  

image.png


上图左侧是一个双流关联的有状态 SQL 作业,图中的 Mem 和 Disk 组成了 SQL 作业的 TaskManager 节点,SQL 作业状态后端使用 RocksDB,状态持久化在 HDFS 文件系统上。一开始我们尝试把 SQL 作业的状态设置为保留一个月,但 SQL 作业会变得不稳定,出现内存超限、状态读取性能下降等问题,只能不断增加作业的 TM 数和内存大小来缓解。  


即使这样,业务上仍然存在两个痛点。首先是关联数据初始化难,目前公司 Kafka 数据源对历史回溯有限制,因此业务不能构建出完整的历史状态,即使 Kafka 支持了更久的回溯,状态初始化的效率也依然是一个问题。其次,内存资源开销大,特别是当多个 SQL 作业关联相同的数据源时,需要为每个 SQL 作业都分配相应的内存资源,不同 SQL 作业间的状态是隔离的,作业间相同的关联数据不能复用。  



《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(3) https://developer.aliyun.com/article/1228304

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
1月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
594 13
Apache Flink 2.0-preview released
|
21天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
64 5
|
1月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
68 3
|
2月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
3月前
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
225 2
|
2月前
|
消息中间件 资源调度 API
Apache Flink 流批融合技术介绍
本文源自阿里云高级研发工程师周云峰在Apache Asia Community OverCode 2024的分享,内容涵盖从“流批一体”到“流批融合”的演进、技术解决方案及社区进展。流批一体已在API、算子和引擎层面实现统一,但用户仍需手动配置作业模式。流批融合旨在通过动态调整优化策略,自动适应不同场景需求。文章详细介绍了如何通过量化指标(如isProcessingBacklog和isInsertOnly)实现这一目标,并展示了针对不同场景的具体优化措施。此外,还概述了社区当前进展及未来规划,包括将优化方案推向Flink社区、动态调整算子流程结构等。
395 31
Apache Flink 流批融合技术介绍
|
1月前
|
存储 数据挖掘 数据处理
Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析
【10月更文挑战第8天】随着数据湖技术的发展,越来越多企业开始利用这一技术优化数据处理。Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析。本文分享了巴别时代在构建基于 Paimon 的 Streaming Lakehouse 的探索和实践经验,包括示例代码和实际应用中的优势与挑战。
64 1
|
1月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
57 1
|
1月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
|
1月前
|
消息中间件 druid Kafka
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
73 0

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多